AGENDA PACKET

DECEMBER 15, 2020 MEETING

	CAL#	PAGE
AGENDA		3
<u>VENEZIA LOT LINE CHANGE, 249 KITCHAWAN ROAD, SOUTH SALEM</u>	Cal #05-20PB	
Memo from the Building Inspector, dated November 16, 2020		5
KULLMAN RESIDENCE, 12 REDCOAT LAND, WACCABUC	Cal#02-19WV	Cal #60-19WP
Stormwater Permit and MS4 form, dated August 11, 2020		6
VALENCIA RESIDENCE, 1196 ROUTE 35, SOUTH SALEM	Cal#01-20WV	Cal #12-20WP
No new materials		
GOSSETT BROTHERS NURSERY, 1202 ROUTE 35, SOUTH SALEM	Cal #03-20PB	Cal #37-20WP
Kellard Sessions memo, dated December 10, 2020		10
Cover letter, Cronin Engineering, dated November 20, 2020		13
Site plan, Cronin Engineering, dated November 20, 2020		14
Architectural drawings, Bloodgood Architectural Design, dated November 9, 2020		16
Lighting and landscape plans, Wesley Stout Associates, dated November 12, 2020		17
Lighting plans, Apex Lighting Solutions, dated November 10, 2020		20
Business plans, dated August 24 and September 24, 2020		21
Public hearing materials		23
ZBA Resolutions, 1963 and 1973		31
<u>VERIZON WIRELESS AT VISTA FIRE DEPT., 377 SMITH</u> <u>RIDGE ROAD, SOUTH SALEM</u>	Cal #3-09PB	
Cover letter, Michael Sheridan, Esq.; dated November 17, 2020		38
Public hearing materials		94
AAB memo, dated December 9 & 10, 2020		102

<u>VERIZON WIRELESS AT LEON LEVY PRESERVE, 1411</u> <u>ROUTE 35 SOUTH SALEM</u>	Cal #6-12PB	
Cover letter, Michael Sheridan, Esq.; dated November 17, 2020		104
Public hearing materials		173
AAB memo, dated December 9 & 10, 2020		180
ASKILDSEN RESIDENCE, 82 MILL RIVER ROAD, SOUTH SALEM	Cal #35-20WP	
No new materials		
<u>SCHWARTZ RESIDENCE, 66 TWIN LAKES ROAD, SOUTH</u> <u>SALEM</u>	Cal #57-20WP	Cal #09-20SW
No new materials		
OAKRIDGE COMMONS, 450 OAKRIDGE COMMON, SOUTH SALEM- Day Care	Cal #08-17PB	
Cover letter, Phil Pine, dated November 16, 2020		182
<u>WILDER BALTER PARTNERS, NY STATE ROUTE 22,</u> <u>GOLDENS BRIDGE</u>	Cal #10-15 PB	Cal #05-17SW
Extension Request Letter; Jeff Contelmo, P.E; dated November 10, 2020	Cal #20-17WP	183
NYSDEC, Permit Modification, dated November 9, 2020		184
<u>MERCEDES BENZ OF GOLDENS BRIDGE, 321 MAIN</u> <u>STREET, GOLDENS BRIDGE</u>	Cal #10-17PB	
Extension Request Email; Michael Sirignano, Esq.; dated December 10, 2020		186
TOWN BOARD TO AMEND TOWN CODE SECTION 220-40		
Proposed changes regarding outdoor special events		187
Westchester County Planning Board memo, dated November 13, 2020		188
<u>RIDGEFIELD, CT ZONING BOARD TO AMEND ITS TOWN</u> <u>CODE §8-7D</u> – changes to the Zoning map		
Cover letter, Town of Ridgefield Planning and Zoning Commission, dated November 10, 2020		198

TOWN OF LEWISBORO Westchester County, New York

Tel: (914) 763-5592 Fax: (914) 875-9148 Email: planning@lewisborogov.com

AGENDA

Tuesday, December 15, 2020

South Salem, New York 10590

Planning Board

79 Bouton Road

Meeting will start at 7:30 p.m. and end at or before 11:00 p.m.

Via Zoom videoconferencing and live streaming to Lewisboro TV YouTube channel

Join Zoom Meeting at https://zoom.us/j/98541138858?pwd=Y1VidHA1dXJjaXBTR0RTdFJjcUlFdz09 Meeting ID: 985 4113 8858 Passcode 515716 You may call in to the Zoom meeting at 1-929-205-6099 when prompted, enter 985 4113 8858

https://www.youtube.com/channel/UCNUNE5gXs5rnHcyR4l6dikA

I. DECISION

Cal #05-20PB

Venezia lot line change, 249 Kitchawan Road, South Salem, NY 10590, Sheet 45A, Block 09827, Lot 113 (237 Kitchawan LLC, owner of record), 237 Kitchawan Road Sheet 45A, Block 09827, Lot 122 (William Venezia, owner of record) and 0 Kitchawan Road Sheet 45A, Block 09827, Lot 124 (William Venezia, owner of record) - Application for a lot line change.

II. WETLAND VIOLATIONS

Cal #02-19WV, Cal #60-19WP, Cal #14-19SW

Kullman Residence, 12 Red Coat Lane, Waccabuc, NY 10597, Sheet 26, Block 11155, Lot 92 (Michael and Susan Kullman, owners of record)

Cal #01-20WV, Cal #12-20WP

Valencia Residence, 1196 Route 35, South Salem, NY 10590, Sheet 31, Block 10805, Lot 45 (Maria and Javier Valencia, owners of record)

III. PUBLIC HEARINGS

Cal #03-20PB, Cal #37-20WP

Gossett Brothers Nursery, 1202 Route 35, South Salem, NY 10590, Sheet 31 Block 10805 Lot 46 (Thomas Gossett for T. Gossett Revocable Trust – owner of record) - Application for Site Development Plan Approval and Wetland Activity Permit Approval for an existing nursery.

Cal #3-09PB

Verizon Wireless at Vista Fire Dept., 377 Smith Ridge Road, South Salem, NY 10590, Sheet 50, Block 9834, Lots 84, 88 & 94 (Vista Fire District, owner of record) - Application for Special Use Permit Renewal.

Cal #6-12PB

Verizon Wireless at Leon Levy Preserve, 1411 Route 35 South Salem, NY 10590, Sheet 40, Block 10263, Lot 62 (Town of Lewisboro, owner of record) - Application for Special Use Permit Renewal.

IV. WETLAND PERMIT REVIEW

Cal #35-20WP

Askildsen Residence, 82 Mill River Road, South Salem, NY 10590, Sheet 42 Block 10299 Lot 83 (Kenneth Askildsen, owner of record) – Application for demolition and construction of a single-family house.

V. SITE WALK REPORT

Cal #57-20WP, Cal #09-20SW

Schwartz Residence, 0 Twin Lakes Road, South Salem, NY 10590, Sheet 34B, Block 11831 Lot 35 (Michael Schwartz, owner of record) - Application for the construction of a one-bedroom house/studio.

VI. RELEASE OF LANDSCAPING BOND

<u>Cal #08-17PB</u>

Oakridge Commons, 450 Oakridge Common, South Salem, NY 10590, Sheet 49D, Block 9829, Lot 10 (Smith Ridge Associates, owner of record) – Release of bond for landscaping at day care center.

VII. EXTENSION OF TIME REQUESTS

Cal #10-15 PB, Cal #20-17WP, Cal #5-17SW

Wilder Balter Partners, NY State Route 22, Goldens Bridge, NY 10526, Sheet 5, Block 10776, Lots 19, 20 & 21 (Property Group Partners, LLC, owner of record) – Request for Extension of Wetland and Stormwater Permit Approvals.

<u>Cal #10-17PB</u>

Mercedes Benz of Goldens Bridge, 321 Main Street, Goldens Bridge, NY 10526, Sheet 4E, Block 11135, Lots 1, 2, 3, 4, 6 & 7 (Charisma Holding Corp., owner of record); Sheet 4E, Block 11135, Lot 5 (Spencemorg, LLC., owner of record), Sheet 4E, Block 11135, Lot 9 (Charles Monaco, owner of record) and Sheet 4E, Block 11137, Lot 42 (Robert Castelli, owner of record) – Application for Site Development Plan for additions to existing auto showroom and service buildings, additional parking spaces and construction of a parking garage.

VIII. DISCUSSION

Town Board to amend Town Code §220 – regulations for outdoor special events.

IX. CORRESPONDENCE

Ridgefield, CT to amend its Zoning Map.

- X. MINUTES OF November 17, 2020
- XI. NEXT MEETING DATE: January 19, 2021.

TOWN OF LEWISBORO Westchester County, New York

EUISBORO HEUISBORO HEUISBO

Tel: (914) 763-3060 Fax: (914) 875-9148 Email: jangiello@lewisborogov.com

November 16, 2020

Building Department

South Salem, New York 10590

79 Bouton Road

Ms. Janet Andersen, Chair Town of Lewisboro Planning Board

Re: Cal#05-20PB Venezia, 249 Kitchawan Rd., sheet 045A, block 09827, lot 113, 237 Kitchawan Rd., sheet 045A, block 09827, lot 122 and No Number Kitchawan Rd., sheet 045A, block 09827, lot 124.

Dear Ms. Andersen and Members of the Board,

I have reviewed the integrated plot plan from Timothy L Cronin III, PE latest revision dated 10/27/2020 and the lot realignment from Rowan Land Surveying, PLLC dated 10/26, 2020.

I believe the lot line change depicted creates two zoning compliant lots.

Please do not hesitate to contact me with any questions.

Sincerely,

Joe Angiello Building Inspector

STORMWATER PERMIT

TOWN OF LEWISBORO

Town Offices 79 Bouton Road, South Salem, New York 10590 Phone: (914) 763-3060 Fax: (914) 533-0097

Date Issued: August 13, 2020

Permit #: <u>14-19 S.W.</u>

Permit is hereby issued to:	Michael Kullman	
	12 Redcoat Lane	

Description of Approved Activity: <u>The subject property consists of ±2.19 acres and is located at 12</u> <u>Redcoat Lane within the R-2A Zoning District.</u> A Wetland Violation was issued on August 5, 2019, <u>pertaining to the unauthorized construction of a detached garage and expansion of the existing</u> <u>driveway/parking court.</u> The applicant has developed improvements and mitigation plans and has <u>applied to the Planning Board for wetland and stormwater permits.</u> The applicant appeared before the <u>February 25, 2020 Planning Board Meeting where the project was deemed to be handled</u> <u>administratively.</u> The applicant has prepared a Stormwater Pollution Prevention Plan (SWPPP) in <u>accordance with Chapter 189-C of the Town Code.</u>

Location of Proposed Activity: <u>12 Redcoat Lane</u>

Sheet: <u>26</u> Block: <u>11155</u> Lot(s): <u>92</u>

CONDITIONS:

- 1. The proposed activity is illustrated on the below-referenced plan, prepared by Bibbo Associates, LLP, dated June 22, 2020, which are hereby approved and are incorporated into this permit by reference:
 - Site Plan (SP-1)
 - Details (D-1)
- 2. The proposed activity is illustrated on the below-referenced plan, prepared by Johnsen Landscapes & Pools, dated June 16, 2020, which is hereby approved and is incorporated into this permit by reference:
 - Wetlands Planting Plan
- 3. Reference shall be made to the following documents:
 - Notice of Intent, dated June 24, 2020
 - Stormwater Pollution Prevention Plan Report, prepared by Bibbo Associates, LLP, dated February 4, 2020
- 4. All work shall be conducted in accordance with the plans and documents referenced herein.

- 5. Prior to the commencement of any site work, the limit of disturbance line shall be staked in the field by a Licensed Land Surveyor and all erosion and sediment controls shall be installed and inspected.
- 6. Prior to the commencement of any site work, the applicant shall provide proof of coverage under the New York State Department of Environmental Conservation (NYSDEC) SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-20-001).
- 7. The applicant shall contact the Town Engineer and Stormwater Management Officer (914-763-3060) 48 hours in advance of commencing work; all erosion controls specified on the approved plan shall be installed prior to the commencement of any site work.
- 8. The Town Engineer and/or Stormwater Management Officer shall be allowed to inspect the subject property during construction.
- 9. Prior to the issuance of a Certificate of Compliance, the applicant shall submit a letter from the Design Engineer certifying that all proposed site work and drainage facilities have been installed in accordance with the approved plan and are functioning properly.
- 10. Prior to the issuance of a Certificate of Compliance, an as-built survey shall be prepared to the satisfaction of the Town Engineer.
- 11. Prior to the issuance of a Certificate of Compliance, the applicant shall submit a Notice of Termination (NOT) to the satisfaction of the Town Engineer.
- 12. Following completion of all site work, a final site inspection shall be conducted by the Stormwater Management Officer and/or Town Engineer; please call 914-763-3060 to schedule an appointment.
- 13. The issuance of this permit does not necessarily authorize the commencement of site work. No site work shall commence until the conditions of this permit have been satisfied (the conditions required to be satisfied prior to the commencement of any site work) and until the owner/applicant has obtained any and all required permits from other Town, County, State or Federal Departments and/or Agencies.
- 14. All work covered by this permit is to be completed before <u>August 13, 2021</u>, unless an extension of this period is requested in writing and granted.

own Engineer

Stormwater Management Officer

NEW YORK STATE OF OPPORTUNITY Department of Environmental Conservation NYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505				
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form				
for Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)				
I. Project Owner/Operator Information				
1. Owner/Operator Name: Michael Kullman				
2. Contact Person: Milo Rajovic				
3. Street Address: 12 Redcoat Lane				
4. City/State/Zip: Waccabuc, New York 10597				
II. Project Site Information				
5. Project/Site Name: Kullman Residence				
6. Street Address: 12 Redcoat Lane				
7. City/State/Zip: Waccabuc, New York 10597				
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information				
8. SWPPP Reviewed by: Joseph M. Cermele, P.E., CFM				
9. Title/Position: Town Engineer				
10. Date Final SWPPP Reviewed and Accepted: August 11, 2020				
IV. Regulated MS4 Information				
11. Name of MS4: Town of Lewisboro				
12. MS4 SPDES Permit Identification Number: NYR20A 227				
13. Contact Person: Joseph Angiello				
14. Street Address: 79 Bouton Road				
15. City/State/Zip: South Salem, New York 10590				
16. Telephone Number: (914) 763-3060				

MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name: Joseph	Angiello

Title/Position: Building Inspector

Signature:

Date: August 11, 2020

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

MEMORANDUM

TO:	Chairperson Janet Andersen and Members of Lewisboro Planning Board
CC:	Ciorsdan Conran Judson Siebert, Esq. Joseph Angiello
FROM:	Jan K. Johannessen, AICP Joseph M. Cermele, P.E., CFM Town Consulting Professionals
DATE:	December 10, 2020
RE:	Site Development Plan Approval, Wetland Permit, and Special Use Permit Gossett Brothers Nursery 1202 Route 35 Sheet 10805, Block 46, Lot 31

PROJECT DESCRIPTION

The subject property consists of ±5.5 acres of land and is located at 1202 Route 35 within the R-2A Zoning District. The subject property contains an existing landscape nursery and is developed with several detached buildings, gravel parking, and inventory display and storage areas. An existing residence is located on the same parcel, located to the rear of the site. The applicant is proposing to legally establish a 25-seat accessory winery business to be located within the existing nursery building and is also proposing the installation of a water treatment system and a wastewater holding tank for the winery. The existing nursery is considered an existing non-conforming use and the winery is permitted within the underlying zone, subject to the issuance of a Special Use Permit from the Zoning Board of Appeals. The subject property contains wetlands that are jurisdictional to the New York State Department of Environmental Conservation (NYSDEC) and the Town of Lewisboro.

<u>SEQRA</u>

The proposed action has been preliminarily identified as an Unlisted Action under the State Environmental Quality Review Act (SEQRA) and a coordinated review is underway. Prior to taking action on this pending application, the Planning Board must issue a determination of significance.

CIVIL ENGINEERING | LANDSCAPE ARCHITECTURE | SITE & ENVIRONMENTAL PLANNING

Chairperson Janet Andersen December 10, 2020 Page 2 of 3

REQUIRED APPROVALS/REFERRALS

- 1. Site Development Plan Approval and a Wetland Activity Permit is required from the Planning Board; a public hearing is required to be held on the Wetland Permit.
- 2. A Special Use Permit is required from the Zoning Board of Appeals.
- 3. The water system and wastewater storage tank require approval from the Westchester County Department of Health (WCDH).
- 4. An Article 24 Freshwater Wetland Permit is required for disturbance proposed within the New York State Department of Environmental Conservation (NYSDEC) 100-foot Wetland Adjacent Area.
- 5. The application has been referred to the Westchester County Planning Board in accordance with Section 239-m of the General Municipal Law.

COMMENTS

- 1. As previously requested, the applicant must demonstrate compliance with the Special Use Permit standards associated with the accessory winery use, as allocated under Section 220-43.6 of the Zoning Code. It is recommended that the applicant provide a written response to each of the parameters outlined under this code section.
- 2. As previously requested, the Site Plan shall dimension the accessible walkway provided between the accessible parking spaces and the building (four (4) foot minimum required). The accessible parking and loading space must be striped in the field in accordance with State and Federal regulations; a note pointing to the accessible space states that the parking lines shown on the plan are for visual representation only; this will need to be revised and clarified.
- 3. The applicant is proposing to demarcate the parking spaces by use of a portable stockade fence. The Board should determine if this is acceptable. Prior versions of the plan incorporated a Belgium block inlay to denote the spaces in the field. Please clarify if wheel stops will also be used as identified in the parking space detail.
- 4. As previously noted, a parking area encroaches onto the adjacent parcel to the east. A detail shall be provided relating to the proposed drainage feature/berm shown along the eastern edge of the parking area. An easement document between the two property owners shall be submitted and prepared to the satisfaction of the Planning Board Attorney. The easement shall be described by metes and bounds.

Chairperson Janet Andersen December 10, 2020 Page 3 of 3

- 5. As previously requested, the limits of land disturbance shall be illustrated and calculated on the Site Plan.
- 6. As previously requested, the applicant shall contact this office regarding the completion of the Part 2 EAF; several of the responses require modification.
- 7. As previously noted, once obtained, the applicant shall provide a copy of the WCDH and NYSDEC approvals, including signed plans and permits. Please also submit the completed applications and plans submitted to both agencies.
- 8. Comments provided by the Town Building Inspector, in his memorandum dated September 2, 2020, shall be addressed.
- 9. In order to expedite the review of subsequent submissions, please provide annotated responses to each of the comments outlined herein.

PLANS REVIEWED, PREPARED BY CRONIN ENGINEERING, P.E., P.C., DATED NOVEMBER 20, 2020:

Site Development Plan (Sheets SP-1.1 and SP-1.2)

PLANS REVIEWED, PREPARED BY WESLEY STOUT ASSOCIATES, DATED NOVEMBER 12, 2020:

- Cover Sheet
- Landscape Layout: Proposed Lighting & Buffering Plan (L-1.0)
- Landscape Layout: Planting Plan (L-2.0)

DOCUMENTS REVIEWED:

- Cover letter, prepared by Cronin Engineering, P.E., P.C., dated November 20, 2020
- Business Plan, dated September 24, 2020
- Letter, prepared by Complete Garden Center, dated August 24, 2020
- Alterations and Additions to Gossett Brothers Nursery, prepared by Bloodgood Architectural Design, dated (last revised) November 11, 2020
- Exterior Lighting Photometric Calculation (Sheet SL-5), prepared by Apex Lighting Solutions, dated November 9, 2020

JKJ/dc

https://kellardsessionsconsulti.sharepoint.com/sites/Kellard/Municipal/Lewisboro/Correspondence/2020-12-10_LWPB_Gossett Brothers Nursery - 1202 Route 35_Review Memo.docx

39 Arlo Lane Cortlandt Manor, NY 10567

T: (914) 736-3664 F: (914) 736-3693

November 20, 2020

Janet Andersen, Chair Town of Lewisboro Planning Board 79 Bouton Road South Salem, NY 10590

Re: Site Development Plan Approval, Wetland Permit, and Special Use Permit Gossett Brothers Nursery 1202 Route 35 Sheet 10805, Block 46, Lot 31

Dear Ms. Andersen and Members of the Planning Board:

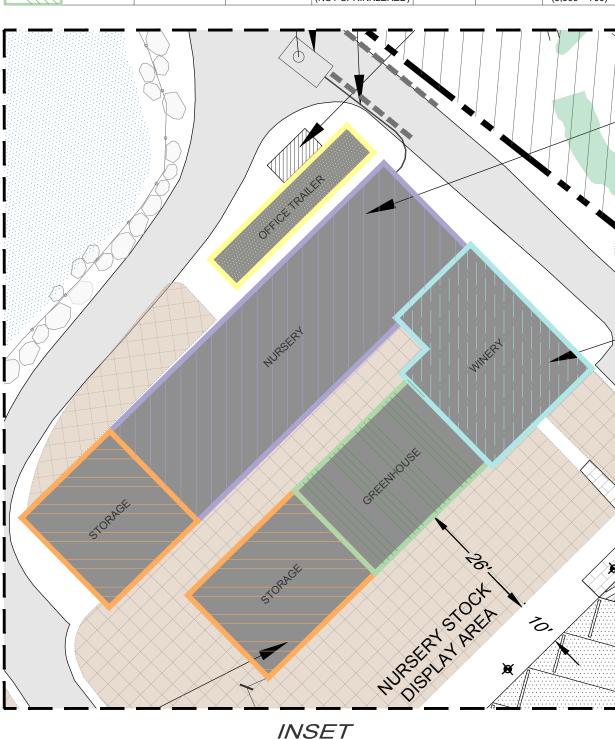
Please find the following items enclosed regarding the resubmittal for an application for approval for the Site Development Plan and Wetlands Permit for the Gossett Brothers Nursery located at 1202 Route 35.

- 1. 6 copies of the revised Site Development Plans dated July 9, 2020 and revised November 20, 2020. (3 full size and 3 at 11x17). These plans were revised per Kellard Sessions Comment Memo dated October 15, 2020.
- 2. 3 copies of the Architectural Floor Plans for Gossett Nursery Building (11x17)

PDF's of the above documents will be emailed to the Planning Board Clerk as well.

We would like to have this application placed on the December 15, 2020 Planning Board agenda for discussion. Should you have any questions or require additional information, please contact me at the above number. Thank you for your time and consideration in this matter.

Respectfully submitted,


Alexandra D'Annunzio Assistant Project Engineer

cc: Thomas and Billy Gossett w/ encl.
 John Vuolo, South Salem Winery
 Jan Johannessen, Kellard Sessions, w/ encl.
 Beth Evans, Evans Associates Environmental Consulting, Inc.

pb-lewisboro-gossett-sdp-re submission-as-20201120.doc

	ALLOWABLE AREA FACTOR						
	2020 BUILDING CODE OF NEW YORK STATE TABLE 506.2						
LEGEND	LEGEND USE OCCUPANCY (IBC 2020 - CHAPTER 3)		CONSTRUCTION TYPE (IBC 2020 - CHAPTER 6)	EXISTING FIRE PROTECTION	EXISTING AREA (S.F.)	ALLOWABLE AREA (S.F.)	PERMITTED?
	WINERY	A-2 (ASSEMBLY)	VB	NS (NOT SPRINKLERED)	±980	6,000	YES (6,000 > 980)
	OFFICE	B (BUSINESS)	VB	NS (NOT SPRINKLERED)	±320	9,000	YES (9,000 > 320)
	NURSERY	M (MERCANTILE)	VB	NS (NOT SPRINKLERED)	±2,060	9,000	YES (9,000 > 2,060)
	STORAGE	S-2 (LOW-HAZARD STORAGE)	VB	NS (NOT SPRINKLERED)	±1,420	13,500	YES (13,500 > 1,420)
	GREENHOUSE	UTILITY	VB	NS (NOT SPRINKLERED)	±790	5,500	YES (5,500 > 790)

	SITE AREA USE DESIGNATIO
LEGEND	USE
	AGRICULTURE NURSERY DISTRICT STOR
	MULCH / SOIL / STONE EQUIPMENT
////	WOODED NURSERY SHADE STOCK
$\times\!\!\times\!\!\times$	SEASONAL PALLETIZED HARD GOODS / BENCH / SEA
	LANDSCAPE OPERATION EQUIPMENT PARKING / BU
	NURSERY STOCK DISPLAY

EXISTING ITEM 4 / BLACKTOP WEARING SURFACE. DRIVEWAY TO RESIDENCE

<u>INSET</u> ALLOWABLE AREA FACTOR PLAN SCALE: 1" = 20'

GOSSETT BROTHERS NURSERY SITE DEVELOPMENT PLAN TOWN OF LEWISBORO, NEW YORK

WETLAND L-19 LIMIT LINE AS DELINEATED BY EVANS ASSOCIATES ENVIRONMENTAL CONSULTING INC. ON MAY 22, 2019 (TYP)

EDGE OF TREE LINE TAKEN FROM TOPOGRAPHIC SURVEY BY H. STANLEY JOHNSON AND COMPANY LAND SURVEYORS, P.C. (TYP)

WOODED NURSE SHADE STOCK AREA (PLANTED

EXISTING ITEM 4 TRAVELED SURFACE (TYP)

PARKING REQUIREMENT TABLE

BUILDING USE	BUILDING AREA	PARKING REQUIREMENT	
NURSERY	2,061 SF	1 SPACE PER 200 SF GROSS FLOO AREA (MIN 10 SPACES)	
WINERY	984 SF	10 MIN*	
GREENHOUSE	793 SF	1 SPACE PER 200 SF GROSS FLOOR AREA (MIN 10 SPACES)	
STORAGE	1422 SF	TBD**	
OFFICE	320 SF	1 SPACE PER 250 SF OF FLOOR AREA	
TOTAL REQUIRED SPACES			
TOTAL ACTIVE SPACES (6+6+8+1H)			
TOTAL LAND BANKED SPACES			

TOTAL AVAILABLE SPACES

PROPOSED FENCE OPERATION BOUNDARY

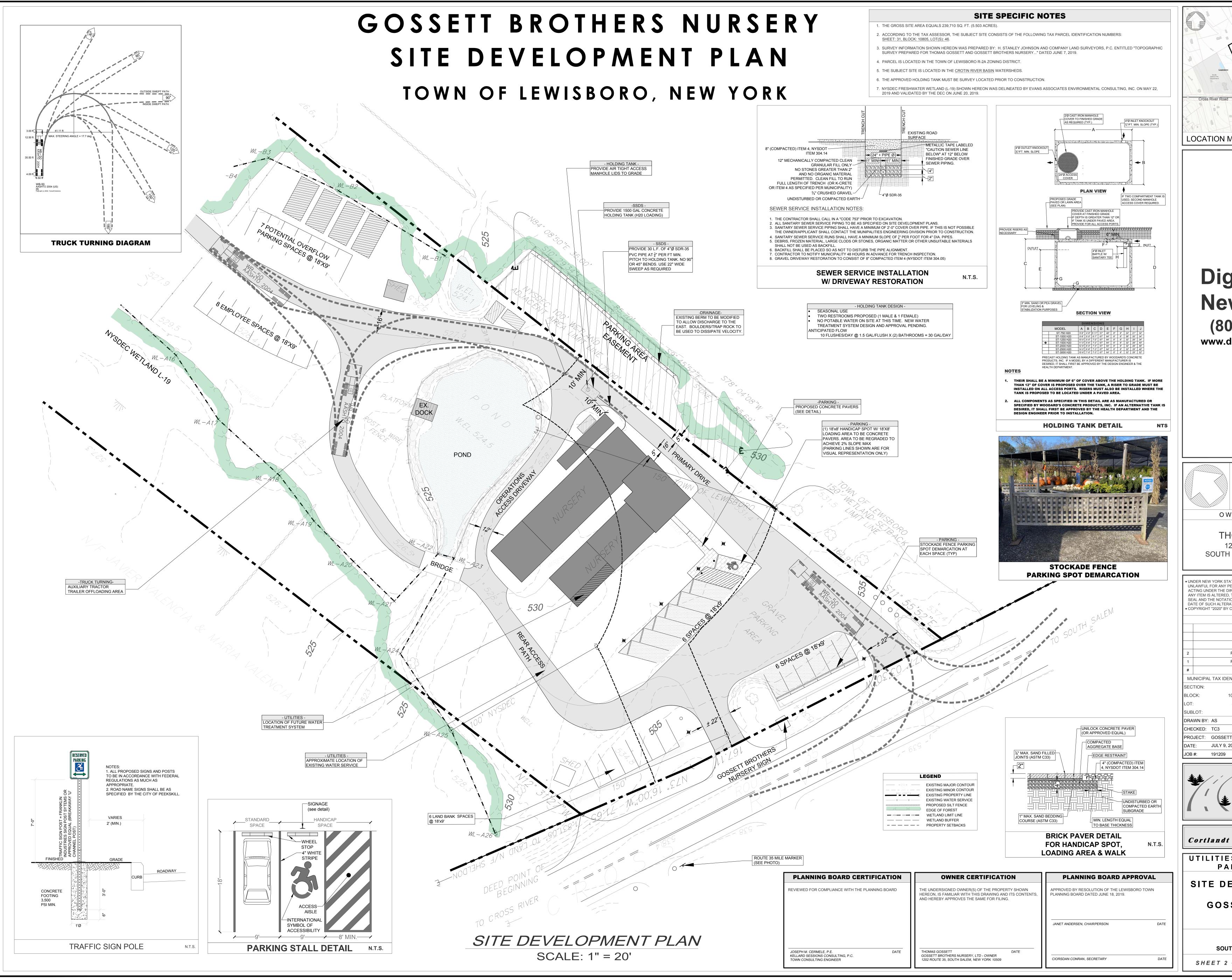
LANDSCAPE OPERATION EQUIPMENT PARKING

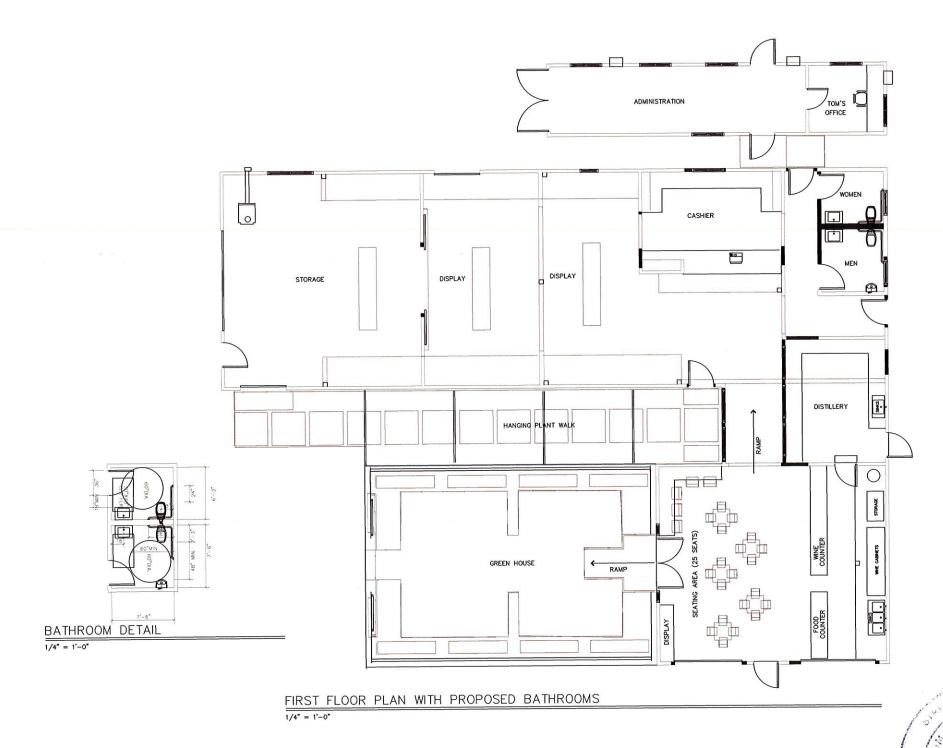
> (4) BULK MATERIAL STORAGE BINS (24'X12')

> > 10 YARD DUMPSTER FOR PLANT MATERIAL, DEBRIS. 15 YARD DUMPSTER FOR RECYCLING

* PURSUANT TO CODE §220-43.6. ACCESSORY WINERY, ACCESSORY MICROBREWERY AND ACC DISTILLERY SUPPLEMENTAL REGULATION (7) THERE SHALL BE NO FEWER THAN 10 OFF-STREET ADDITION TO THOSE REQUIRED BY THIS CHAPTER FOR THE FARM OR BUSINESS TO WHICH THE ATTACHED. **PLANNING BOARD TO DETERMINE AMOUNT, IF ANY.

ION TABLE DRAGE / PLANTING AREA IT STORAGE AREA K AREA (PLANTED) EASONAL DISPLAY STORAGE AREA BULK MATERIAL STORAGE BINS AY AREA


AGRICULTURE NURSERY DISTRICT STORAGE / PLANTING AREA


6 LAND BANK SPACES @ 18'x9'

SEASONAL PALLETIZED HARD GOODS / BENCH/ EASONAL DISPLAY STORAGE AREA

	SITE SPECIFIC NOTES	6
D V	1. THE GROSS SITE AREA EQUALS 239,710 SQ. FT. (5.503 ACRES).	
RY	 ACCORDING TO THE TAX ASSESSOR, THE SUBJECT SITE CONSISTS OF THE FOLLOWING TAX PARCEL IDENTIFICATION NUMBERS: SHEET: 31, BLOCK: 10805, LOT(S): 46. SURVEY INFORMATION SHOWN HEREON WAS PREPARED BY: H. STANLEY JOHNSON AND COMPANY LAND SURVEYORS, P.C. ENTITLED "TOPOGRAPHIC SURVEY ADDED FOR THOMAS COORDET AND COORDET PROTIED AND PENDED AND PENDED COTODED 20, 2020. 	
	SURVEY PREPARED FOR THOMAS GOSSETT AND GOSSETT BROTHERS NURSERY" DATED JUNE 7, 2019 AND REVISED OCTOBER 30, 2020. 4. PARCEL IS LOCATED IN THE TOWN OF LEWISBORO R-2A ZONING DISTRICT. 5. THE SUBJECT SITE IS LOCATED IN THE CROTIN RIVER BASIN WATERSHEDS.	
	 6. THE APPROVED HOLDING TANK MUST BE SURVEY LOCATED PRIOR TO CONSTRUCTION. 7. NYSDEC FRESHWATER WETLAND (L-19) SHOWN HEREON WAS DELINEATED BY EVANS ASSOCIATES ENVIRONMENTAL CONSULTING, INC. ON MAY 22, 	Solition File Department
7	2019 AND VALIDATED BY THE DEC ON JUNE 20, 2019. SITE DEVELOPMENT NOTES	Cross River Road
	 PRIOR TO COMMENCING ANY WORK THE CONTRACTOR IS TO CONTACT DIG SAFELY NEW YORK (FORMERLY UFPO) (CODE 753) AT 1-800-962-7962. THE LOCATION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR IN THE DESCRIPTION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR IN THE DESCRIPTION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR IN THE DESCRIPTION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR IN THE DESCRIPTION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE, THEREFORE ACCURACY, COMPLETENESS AND/OR EXISTANCE OF CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND OF UNDERGROUND OF UNDERGROUND OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND UTILITIES CONTRACTOR INTEGRATION OF UNDERGROUND OF UNDERGROUND OF UNDERGROUND OF UNDERGROUND	Site LOCATION
ABLE	 SUBSURFACE INFORMATION CAN NOT BE CERTIFIED BY THE ENGINEER. THE CONTRACTOR OR HIS AUTHORIZED REPRESENTATIVE SHALL BE RESPONSIBLE FOR ALL APPLICATIONS, PERMITS AND/OR FEES REQUIRED BY THE TOWN OF LEWISBORO, WESTCHESTER COUNTY, NEW YORK STATE AND/OR THE FEDERAL GOVERNMENT UNLESS OTHER ARRANGEMENTS ARE MADE WITH THE OWNER. 	LOCATION MAP SCALE: 1" = 800'
ENT REQUIRED SPACES	 WITH THIS OWNER. 4. IT IS THE OWNER'S RESPONSIBILITY TO ENSURE THAT ANY PROPOSED IMPROVEMENTS ARE PLACED ON MATERIAL WITH A SUITABLE BEARING CAPACITY. 	
SS FLOOR ES) 11	 5. ANY DAMAGE TO ADJACENT PROPERTIES SHALL BE REPLACED IN KIND BY THE OWNER. 6. IF BLASTING IS REQUIRED, THE CONTRACTOR IS TO OBTAIN ALL NECESSARY PERMITS FROM THE APPROPRIATE CITY OF PEEKSKILL OFFICIALS. 	
10 SS FLOOR	 ALL CONSTRUCTION RELATED ACTIVIES MUST BE WITHIN THE EROSION CONTROL BARRIER. EROSION CONTROL BARRIERS SHOULD REMAIN IN PLACE UNTIL THE PROJECT IS COMPLETE. B. GRADING SHALL NOT EXCEED 1 VERTICAL ON 2 HORIZONTAL EXCEPT IN ROCK AS DETERMINED BY THE ENGINEER. 	
ES) 4 TBD**	9. IF UNFORSEEN UNDERGROUND CONDITIONS ARE ENCOUNTERED (I.E. ROCK, GROUNDWATER, ETC.) THE CONTRACTOR SHALL CONTACT THE DESIGN ENGINEER PRIOR TO CONTINUING WORK.	
DOR AREA 2	 IT IS THE OWNERS RESPONSIBILITY TO ENSURE THAT ALL REQUIRED SETBACK DISTANCES ARE MAINTAINED DURING CONSTRUCTION. THIS PLAN WAS PREPARED FOR THE PURPOSE OF OBTAINING SITE PLAN APPROVAL FROM THE TOWN OF LEWISBORO TO CONSTRUCT THE ITEMS SHOWN, GENERALLY, IN THE LOCATIONS SHOWN ON THIS PLAN. 	
27	 CONTRACTOR IS TO PROVIDE SHEETING AS REQUIRED BY THE NYSDOT, OSHA, AND NYS DEPT. OF LABOR, INDUSTRIAL CODE RULE 753 WHERE APPLICABLE (>5' DEEP). CONTRACTOR DECIDENT AND INSTALLATION OF THE UNDERCORDUNE LITER (NOLLIDING BUT NOT UNITED TO CASE FLECTRICITY, TELEPHONE, CARLE). 	
21	 LOCATION, DESIGN AND INSTALLATION OF THE UNDERGROUND UTILITIES (INCLUDING BUT NOT LIMITED TO GAS, ELECTRICITY, TELEPHONE, CABLE) SHALL BE AS DIRECTED BY THE UTILITY COMPANIES AND THE CITY OF PEEKSKILL. THERE ARE NO PROPOSED TREES TO BE REMOVED. 	
6	EROSION & SEDIMENT CONTROL NOTES 1. CONTRACTOR SHALL BE RESPONSIBLE FOR COMPLIANCE WITH ALL SEDIMENT AND EROSION CONTROL PRACTICES. THE SEDIMENT AND EROSION	Dig Safely. New York
27 EWERY AND ACCESSORY CRAFT	 CONTROL PRACTICES ARE TO BE INSTALLED PRIOR TO ANY MAJOR SOIL DISTURBANCES, AND MAINTAINED UNTIL PERMANENT PROTECTION IS ESTABLISHED. 2. TIMELY MAINTENANCE OF SEDIMENT CONTROL STRUCTURES IS THE RESPONSIBILITY OF THE CONTRACTOR. ALL STRUCTURES SHALL BE MAINTAINED 	New York
10 OFF-STREET PARKING SPACES IN 5 TO WHICH THE ACCESSORY USE IS	IN GOOD WORKING ORDER AT ALL TIMES. THE SEDIMENT LEVEL IN ALL SEDIMENT TRAPS SHALL BE CLOSELY MONITORED AND SEDIMENT REMOVED PROMPTLY WHEN MAXIMUM LEVELS ARE REACHED OR AS ORDERED BY THE ENGINEER. ALL SEDIMENT CONTROL STRUCTURES SHALL BE INSPECTED WEEKLY, PRIOR TO EXPECTED RAIN EVENTS, AND AFTER EACH HEAVY RAIN TO INSURE PROPER OPERATION AS DESIGNED. AN INSPECTION SCHEDULE SHALL BE SET FORTH PRIOR TO THE START OF CONSTRUCTION.	(800) 962-7962
	 THE LOCATIONS AND THE INSTALLATION TIMES OF THE SEDIMENT CAPTURING STANDARDS SHALL BE AS ORDERED BY THE ENGINEER, AND IN ACCORDANCE WITH ACCEPTED STANDARDS. ALL TOPSOL NOT TO BE USED FOR FINAL CRADING SHALL BE REMOVED FROM THE SITE IMMEDIATELY AND PLACED IN A STARIUZED STOCKPILE OR 	www.digsafelynewyork.com
	 ALL TOPSOIL NOT TO BE USED FOR FINAL GRADING SHALL BE REMOVED FROM THE SITE IMMEDIATELY AND PLACED IN A STABILIZED STOCKPILE OR FILL AREA. ALL TOPSOIL REQUIRED FOR FINAL GRADING AND STORED ON SITE SHALL BE LIMED, FERTILIZED, TEMPORARILY SEEDED AND MULCHED WITHIN 14 DAYS. ANY DISTURBED AREAS THAT WILL BE LEFT EXPOSED MORE THAN 21 DAYS AND NOT SUBJECT TO CONSTRUCTION TRAFFIC. SHALL IMMEDIATELY 	
	 ANY DISTORBED AREAS THAT WILL BE LEFT EXPOSED MORE THAN 21 DATS AND NOT SUBJECT TO CONSTRUCTION TRAFTIC, SHALL INMEDIATELY RECEIVE TEMPORARY SEEDING. MULCH SHALL BE USED IF THE SEASON PREVENTS THE ESTABLISHMENT OF A TEMPORARY COVER. DISTURBED AREAS SHALL BE LIMED AND FERTILIZED PRIOR TO TEMPORARY SEEDING. ALL DISTURBED AREAS WITHIN 500 FEET OF AN INHABITED DWELLING SHALL BE WETTED AS NECESSARY TO PROVIDE DUST CONTROL. 	
	 THE CONTRACTOR SHALL KEEP THE ROADWAYS WITHIN THE PROJECT CLEAR OF SOIL AND DEBRIS AND IS RESPONSIBLE FOR ANY STREET CLEANING NECESSARY DURING THE COURSE OF THE PROJECT. 	
	 SEDIMENT AND EROSION CONTROL STRUCTURES SHALL BE REMOVED AND THE AREA STABILIZED WHEN THE DRAINAGE AREA HAS BEEN PROPERLY STABILIZED BY PERMANENT MEASURES. SOIL SEEDING AND FERTILIZER AMENDMENTS SHALL BE PERFORMED IN ACCORDANCE WITH THE CURRENT EDITION OF "NEW YORK GUIDELINES FOR 	
	URBAN EROSION AND SEDIMENT CONTROL". 10. ALL SEDIMENT AND EROSION CONTROL MEASURES SHALL BE INSTALLED IN ACCORDANCE WITH THE CURRENT EDITION OF "NEW YORK GUIDELINES FOR URBAN EROSION AND SEDIMENT CONTROL".	
	ZONING DATA CHART - R-2A (RESIDENTIAL ZONING DISTRICT) SITE: EXISTING, NON CONFORMING	
	LOT DESCRIPTIONLOT AREALOT WIDTHFRONT YARD (FROM STREET CENTER LINE)FRONT YARD (FROM FRONT LOT LINE)SIDE YARD SIDE YARDBUILDING BUILDING (REAR YARDBUILDING BUILDING (COVERAGE (%)	40 0 20 40
	MINIMUM REQUIRED 2 AC 200 FT 75 FT 50 FT 40' EACH SIDE 50 FT 2.5 STORIES / 35 FT 9% (MAX.)	SCALE: 1" = 40 FT.
	EXISTING AND PROPOSED 5.503 AC 219 FT 114 FT 114 FT 43 FT / 3 FT* 110 FT >35 FT ±4.4%	OWNER/DEVELOPER
	*3 FT SIDE YARD SETBACK REMAINS AS PER EXISTING CONDITION	THOMAS GOSSETT
ASSORTED BOULDERS TO BE RANDOMLY PLACED AROUND — EDGE OF POND WITH WETLAND MITIGATION PLANTS TO ASSIST WITH EROSION CONTROL	PURSUANT TO THE TOWN OF LEWISBORO CODE; CHAPTER 220. ZONING ARTICLE V. SUPPLEMENTAL REGULATIONS §220-32 AN ACCESSORY WINERY IS CONSIDERED A SPECIAL USE OF WHICH CONFORMANCE TO ADDITIONAL STANDARDS IS REQUIRED. REFER TO §220-43.6 ACCESSORY WINERY, ACCESSORY MICROBREWERY AND ACCESSORY CRAFT DISTILLERY FOR SUPPLEMENTAL REGULATIONS.	1202 OLD POST ROAD SOUTH SALEM, NEW YORK 10590
TRASH AND RECYCLING	3.5	• UNDER NEW YORK STATE EDUCATIONAL LAW ARTICLE 145, SECTION 7209 (2), IT IS UNLAWFUL FOR ANY PERSON TO ALTER ANY ITEM ON THIS DRAWING, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER. IF ANY ITEM IS ALTERED, THE ALTERING ENGINEER SHALL AFFIX TO THE ITEM HIS
CONTAINERS	8701	SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS SIGNATURE AND THE DATE OF SUCH ALTERATION AND A SPECIFIC DESCRIPTION OF THE ALTERATION. • COPYRIGHT "2020" BY CRONIN ENGINEERING, P.E., P.C. ALL RIGHTS RESERVED.
LOCATI BATHR	ION OF PROPOSED OOMS	REVISIONS
	NOTE: SEE SP-1.1 INSET FOR ALLOWABLE AREA FACTOR CALCULATIONS.	2 PB, KS COMMENTS 11-20-20
5 1989 1989 530 50 1989 1989 5	LOCATION OF ACCESSORY WINERY IN NURSERY	1 PB, KS COMMENTS 9-29-20 # REASON DATE
	EXISTING ITEM 4 PARKING AREA SURFACE (TYP)	MUNICIPAL TAX IDENTIFICATION: SECTION: 31
	ROUTE 35 MILE MARKER	BLOCK: 10805 LOT: 46
A SAU IN	EXISTING CONCRETE BLOCK WALL	SUBLOT: - DRAWN BY: AS CHECKED: TC3
Server and the server	South SALEW	PROJECT: GOSSETT NURSERY DATE: JULY 9, 2020 TIMOTHY L. CRONIN III, P.E.
		JOB #: 191209 LICENSE #062980
		W CRONIN
1 665 15° + 122'	EXISTING ASPHALT BIB	ENGINEERING PROFESSIONAL ENGINEERING & CONSULTING
GOSSET BROTHER SIGN		(914) 736-3664
PROPOSED LIGHT POL PROPOSED LIGHTING (TYP) SEE LIGHTING PLAN BY OTHER PLAN BY OTHER PLAN BY OTHER	W W EXISTING WATER SERVICE PROPOSED SILT FENCE EDGE OF FOREST W W WETLAND LIMIT LINE	<i>39 Arlo Lane Cortlandt Manor, New York 10567</i>
A CONTRACT OF A		SITE DEVELOPMENT PLAN
PLANNING BOARD CEF		SITE PLAN
REVIEWED FOR COMPLIANCE WITH THE	PLANNING BOARD THE UNDERSIGNED OWNER(S) OF THE PROPERTY SHOWN HEREON, IS FAMILIAR WITH THIS DRAWING AND ITS CONTENTS, AND HEREBY APPROVES THE SAME FOR FILING. APPROVED BY RESOLUTION OF THE LEWISBORO TOWN	FOR
		GOSSETT BROTHERS
	JANET ANDERSEN, CHAIRPERSON DATE	LOCATION: 1202 OLD POST ROAD
JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING, P.C. TOWN CONSULTING ENGINEER	DATE THOMAS GOSSETT DATE GOSSETT BROTHERS NURSERY, LTD - OWNER 1202 ROUTE 35, SOUTH SALEM, NEW YORK 10509 CIORSDAN CONRAN, SECRETARY DATE	SOUTH SALEM, NEW YORK 10590
		SHEET 1 OF 2 SP-1.1

	6
	Longuien Aona
650.9	1020
	9 85 Cross
	Same 5 BB Crossiriverand
Sites SITE LO	
	OCATION
MAP so	CALE: 1" = 800'
	.
g Safe	
wYork	c
0) 962-79	62
ligsafelynewyor	k.com
20 0 1	0 20
SCALE: 1" = 2	
3CALE. I - Z	0 F I.
VNER/DEVELOPER	
VNER/DEVELOPER	<u></u>
IOMAS GOSSET	r
	r
IOMAS GOSSET	r
IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1	C 0590 ECTION 7209 (2), IT IS RAWING, UNLESS
INER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1	C 0590 CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE
INER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF	C 0590 CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION.
INER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF	C 0590 CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION.
VNER/DEVELOPER OMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R	C 0590 CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION.
VNER/DEVELOPER OMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R	C 0590 CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION.
VNER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE VERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS	CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF THE ALTERATION. IGHTS RESERVED.
VNER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS	CTION 7209 (2), IT IS RAWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON	CTION 7209 (2), IT IS CAUNG, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31	CTION 7209 (2), IT IS CAUNG, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31	CTION 7209 (2), IT IS CAUNG, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805	CTION 7209 (2), IT IS CAUNG, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805	CTION 7209 (2), IT IS CAUNG, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
V N E R / D E V E L O P E R IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY	CTION 7209 (2), IT IS CAUNG, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED.
V N E R / D E V E L O P E R IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY	CTION 7209 (2), IT IS AUENGINEER. IF COTHE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 111-20-20 9-29-20 DATE DATE
ATE EDUCATIONAL LAW ARTICLE 145, SE 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI	CTION 7209 (2), IT IS AUENGINEER. IF COTHE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 111-20-20 9-29-20 DATE DATE
V N E R / D E V E L O P E R IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE	CTION 7209 (2), IT IS AUXING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 111-20-20 9-29-20 DATE DATE
ATE EDUCATIONAL LAW ARTICLE 145, SE TERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CL LICENSE	CTION 7209 (2), IT IS AUXING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 11-20-20 9-29-20 DATE INNIII, P.E. #062980
ATE EDUCATIONAL LAW ARTICLE 145, SE PRESON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 108005 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 111-20-20 9-29-20 DATE DATE
ATE EDUCATIONAL LAW ARTICLE 145, SE PRESON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 108005 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 11-20-20 9-29-20 DATE DATE
ATE EDUCATIONAL LAW ARTICLE 145, SE PROFESSION TO ALTER ANY ITEM ON THIS DF PRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX INN "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE PROFESSIONAL ENGINEERING &	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 11-20-20 9-29-20 DATE DATE
ATE EDUCATIONAL LAW ARTICLE 145, SE PROFESSION TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION 'ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE CROSSIONAL ENGINEERING & (914) 736-30 39 Arlo Lane	CTION 7209 (2), IT IS AUXING, UNLESS ALENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 111-20-20 9-29-20 DATE INTE AUXINI III, P.E. #062980
ATE EDUCATIONAL LAW ARTICLE 145, SE PROFESSION TO ALTER ANY ITEM ON THIS DF IRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 	CTION 7209 (2), IT IS AUXING, UNLESS ALENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. IGHTS RESERVED. 111-20-20 9-29-20 DATE INTE AUXINI III, P.E. #062980
VNER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DF PERSON TO ALTER ANY ITEM ON THIS DF PERSON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CL LICENSE PROFESSIONAL ENGINEERING A (914) 736-30 39 AFIO LARE MARDOF, NEW YORA S, TRUCK TURN	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GOTION THE TERMINS OTHE ITEM HIS OTHE ITEM HIS OTHE ITEM HIS ONTO THE ITEM
VNER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE IRECTION OF A LICENSED PROFESSION THE ALTERING ENGINEER SHALL AFFLY ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CL LICENSE PROFESSIONAL ENGINEERING & (914) 736-30 39 Ar Io Lane Manor, New Yor J	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GOTION THE TERMINS OTHE ITEM HIS OTHE ITEM HIS OTHE ITEM HIS ONTO THE ITEM
VNER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO A LICENSED PROFESSION THE ALTERING ENGINEER SHALL AFFIX ION "A LTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE CROSSIONAL ENGINEERING & (914) 736-30 39 Ario Lane Manor, New Yor, S, TRUCK TURN RKING DETAILS	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GHTS RESERVED. 11-20-20 9-29-20 DATE NING & A 10567 A 10567
VNER/DEVELOPER IOMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO A LICENSED PROFESSION THE ALTERING ENGINEER SHALL AFFIX ION "A LTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE CROSSIONAL ENGINEERING & (914) 736-30 39 Ario Lane Manor, New Yor, S, TRUCK TURN RKING DETAILS	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GHTS RESERVED. 11-20-20 9-29-20 DATE NING & A 10567 A 10567
VNER/DEVELOPER OMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE PRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE CRORENEERING, P.E., P.C. ALL S, TRUCK TURN R KING DETAILS EVELOPMENT FOR	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GHTS RESERVED. 111-20-20 9-29-20 DATE NING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING
VNER/DEVELOPER OMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE PRECTION OF A LICENSED PROFESSION, THE ALTERING ENGINEER SHALL AFFIX ION "ALTERED BY" FOLLOWED BY HIS SI ATION AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CI LICENSE CRORENEERING, P.E., P.C. ALL S, TRUCK TURN R KING DETAILS EVELOPMENT FOR	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GHTS RESERVED. 111-20-20 9-29-20 DATE NING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING
ATE EDUCATIONAL LAW ARTICLE 145, SE 202 OLD POST ROAD SALEM, NEW YORK 1 ATE EDUCATIONAL LAW ARTICLE 145, SE PROSON TO ALTER ANY ITEM ON THIS DE INFECTION OF A LICENSED PROSESSION. THE ALTERING ENGINEER SHALL AFFIX ION 'ALTERED BY' FOLLOWED BY HIS SI PE, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 	CTION 7209 (2), IT IS AWING, UNLESS AL ENGINEER. IF TO THE ITEM HIS GNATURE AND THE THE ALTERATION. GHTS RESERVED. 111-20-20 9-29-20 DATE NING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING CONSULTING
ATE EDUCATIONAL LAW ARTICLE 145, SE ERSON TO ALTER ANY ITEM ON THIS DE RECTION OF A LICENSED PROFESSION THEATTERING ENGINEER SHALL AFFIN ATTO AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CL LICENSE CROGINEERING & (914) 736-30 39 Ar1o Lane Manor, New Yord S, TRUCK TURN RKING DETAILS CVELOPMENT FOR SETT BROTHE NURSERY LOCATION: 1202 OLD POST ROAD	Consulting Consulting
NER/DEVELOPER OMAS GOSSET 202 OLD POST ROAD SALEM, NEW YORK 1 ATTEEDUCATIONAL LAW ARTICLE 145, SE PERSON TO ALTER ANY ITEM ON THIS DE FRECTION OF A LICENSED PROFESSION THO AALTERING ENGINEER SHALL AFFIN ATTON AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 	Consulting Consulting
ATE EDUCATIONAL LAW ARTICLE 145, SE ERSON TO ALTER ANY ITEM ON THIS DE RECTION OF A LICENSED PROFESSION THEATTERING ENGINEER SHALL AFFIN ATTO AND A SPECIFIC DESCRIPTION OF CRONIN ENGINEERING, P.E., P.C. ALL R REVISIONS PB, KS COMMENTS PB, KS COMMENTS REASON NTIFICATION: 31 10805 46 - T NURSERY 2020 TIMOTHY L. CL LICENSE CROGINEERING & (914) 736-30 39 Ar1o Lane Manor, New Yord S, TRUCK TURN RKING DETAILS CVELOPMENT FOR SETT BROTHE NURSERY LOCATION: 1202 OLD POST ROAD	Consulting Consulting

PLANNING BOARD CERTIFICATION REVIEWED FOR COMPLIANCE WITH THE PLANNING BOARD

OWNER CERTIFICATION

THE UNDERSIGNED OWNER(S) OF THE PROPERTY SHOWN HEREON, IS FAMILIAR WITH THIS DRAWING AND ITS CONTENTS, AND HEREBY APPROVES THE SAME FOR FILING.

PLANNING BOARD APPROVAL APPROVED BY RESOLUTION OF THE LEWISBORO TOWN

PLANNING BOARD DATED JUNE 18, 2019.

JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING, P.C

TOWN CONSULTING ENGINEER

DATE

DATE GOSSETT BROTHERS NURSERY, LTD - OWNER 1202 ROUTE 35, SOUTH SALEM, NEW YORK 10509

THOMAS GOSSETT

CIORSDAN CONRAN, SECRETARY

JANET ANDERSEN, CHAIRPERSON

DATE

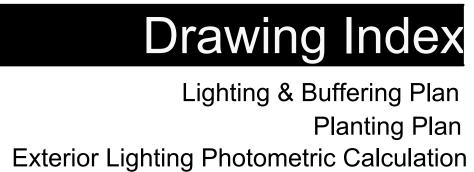
DATE

GOSSETT BROTHERS NURSERY

South Salem, NY 10590

L-1.0 L-2.0 SL-5

General Notes


- the owner and/or landscape architect of any discrepancies. 3. Contact "Dig Safely NY" at 811 prior to beginning any site work activities or
- excavation.
- or construction on state or town property. 5. All work shall conform to the requirements of the Town of Lewisboro, N.Y.
- to commencing construction activities. 6. Install erosion controls and tree protection prior to any excavation and/or clearing.
- local codes. 8. Protect trees to remain with a 4 FT. HT. snow or construction fence in
- line of tree. Install tree protection prior to any earthwork or clearing. duration of construction. Do not store materials or equipment within tree
- protection or drip line of tree. 10. Layout all paving and curbing prior to construction. Receive landscape architects approval on layout prior to starting work.
- 11. Provide samples of all stone, brick and mortar materials for landscape architects approval.
- contract limit lines.
- required to complete the work. 14. Paving dimensions are from the edge of pavement or face wall to edge of
- pavement or face of wall opposite, unless otherwise noted.
- 16. All walks and steps shall have a minimum wash of 1/4" per foot. 12" beyond pavement edge @ +/- 18" depth. Mark end with 12" long rebar
- driven to 6" below finished grade.
- areas to a minimum depth of 6". architect for future planting areas.
- Round tops and bottoms of grades.

Landscape Architecture Plannin Sustainable Desig

96 Main Street New Canaan, CT 06840 Ph 203 966-3100 Fax 203 966-3131

Set 11/12/2020

1. Existing conditions and survey information prepared by H. Stanley Johnson and Co., Inc., 42 Smith Avenue, Mt. Kisco NY 10549, tel: (914) 241-3872, 2. Verify locations, elevations and dimensions in field prior to construction. Notify

4. All development activities to be undertaken with street rights of-way and other public lands shall comply fully with applicable state and/or town standards. Notify appropriate agency at least 72 hours prior to any excavation or clearing

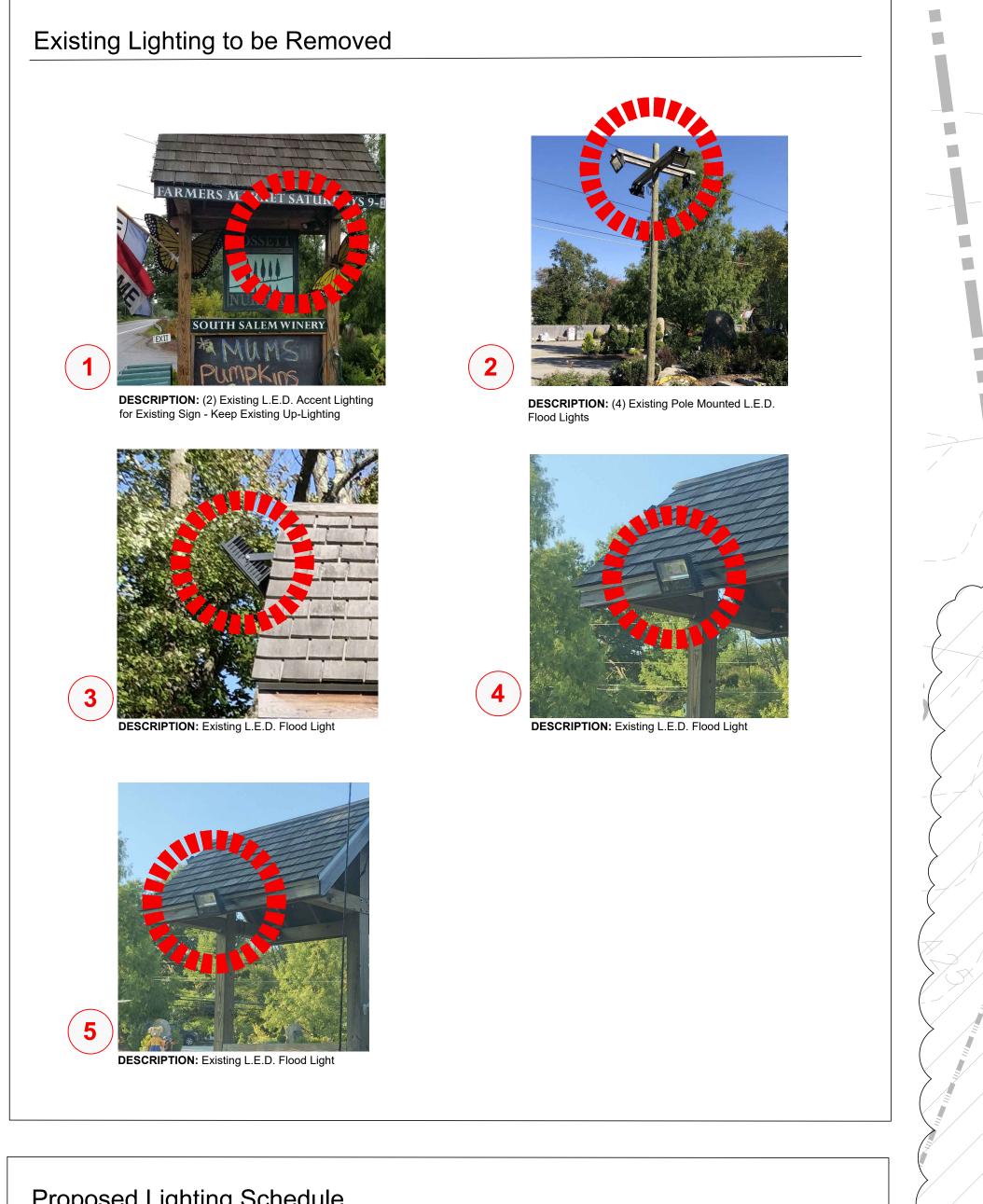
Notify appropriate agencies at least 48 hours prior to performing work under their jurisdiction. Obtain all necessary approval from appropriate agencies prior

7. Removal and disposal of all materials to comply with any and all state and/or

accordance with the tree protection detail. Maintain protection throughout construction period. Do not store materials or equipment within fence or drip 9. General contractor to provide all tree protection and to maintain protection for

12. Contract limit lines are property lines unless otherwise shown on drawings. Contractor is responsible for repair of damage or disturbance to other areas which may occur as the result of their work whether within or outside of the

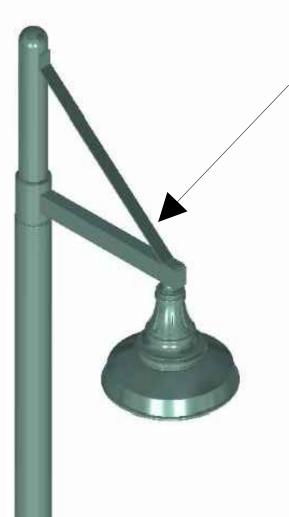
13. Contractor is responsible for securing all construction permits and licenses


15. Final grade in all cases shall slope away from the building at least 1/4" per foot. 17. Provide sleeves at indicated areas. Provide (2) PVC schedule 40 pipes - 1 @ 2" and 1 @ 4" diameter at each location. Cap and mark ends. Extend sleeves

18. Strip topsoil from all areas to be paved or filled, stockpile as indicated for reuse in lawn areas. Supply additional topsoil needed to bring all lawn and planting

19. Screen all topsoil and spread to a 6" depth over all disturbed areas. Fine grade and seed to create finished lawn, or as otherwise directed by landscape

20. Blend new work smoothly with existing grades. avoid sharp breaks in grade.



Proposed Lighting Schedule

-		
Qty.	Symbol	
6		FI

Туре Description -lood Light

'Park Ridge Series' Arm Mounted LED Downlight, Black Powder Coat #1910LEDRLM18-5P, 3500K, Type 3R Distribution, Include Powder-Painted 18" Shade and Mounting Accessories to be fixed on Black Powder Coated Aluminum Pole, as manufactured by Sternberg Lighting, 555 Lawrence Avenue, Roselle IL 60172, tel: 847-588-3400, website: www.sternberglighting.com, as supplied by Apex Lighting, contact Silvia Perdikis, tel: (860)-707-3024, email: SPerdikis@apexltg.com (or equal).

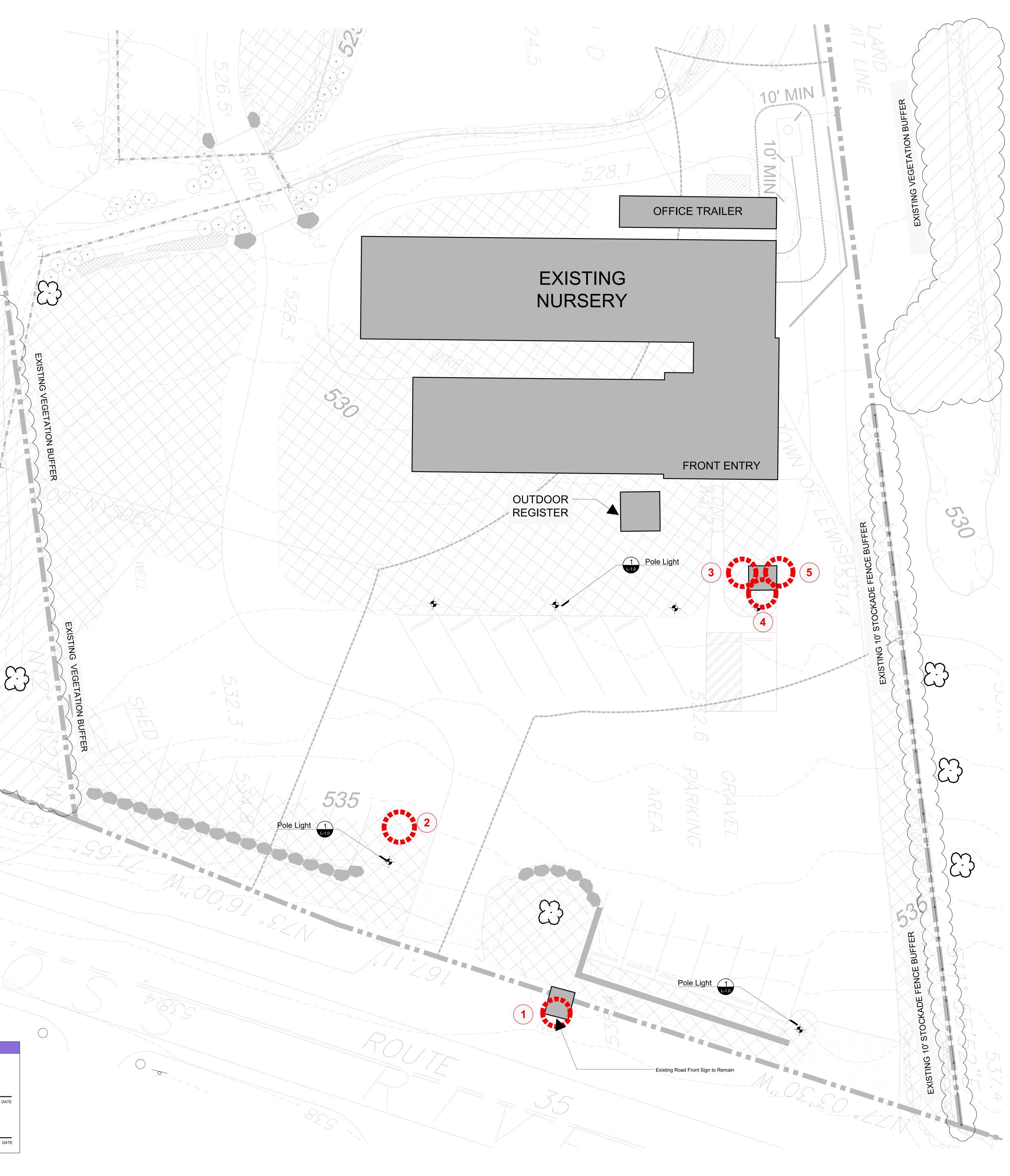
'Park Ridge Series' Light. Mounted at 14' height to structural pole. As manufactured by Sternberg Lighting or approved equal. See Plans for Locations.

Pole Light

Not to Scale

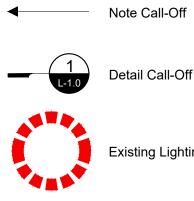
PLANNING BOARD CERTIFICATION	
REVIEWED FOR COMPLIANCE WITH THE PLANNING BOARD	TH HE AN
JOSEPH M. CERMELE, P.E. DATE KELLARD SESSIONS CONSULTING, P.C. TOWN CONSULTING ENGINEER	T G 1

OWNER CERTIFICATION


THE UNDERSIGNED OWNER(S) OF THE PROPERTY SHOWN HEREON, IS FAMILIAR WITH THIS DRAWING AND ITS CONTENTS, AND HEREBY APPROVES THE SAME FOR FILING.

THOMAS GOSSETT GOSSETT BROTHERS NURSERY, LTD - OWNER 1202 ROUTE 35, SOUTH SALEM, NEW YORK 10509 DATE PLANNING BOARD APPROVAL

APPROVED BY RESOLUTION OF THE LEWISBORO TOWN PLANNING BOARD DATED JUNE 18, 2019.

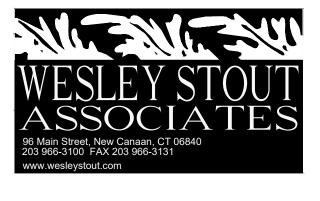

JANET ANDERSEN, CHAIRPERSON	DATE

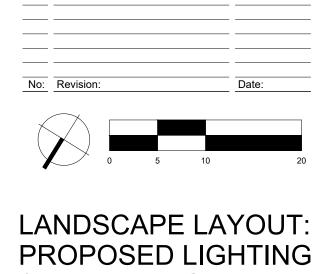
CIORSDAN CONRAN, SECRETARY

Symbol Legend

Detail Call-Off

Existing Lighting to be Removed


Lighting Notes


Notify Landscape Architect 72 hours minimum in advance of starting onsite operations. Receive approval for layout of all fixture locations prior to installation. 2. Be aware of all underground utilities prior to any excavation operations. Contact 811 "Dig Safely NY" prior to excavation. Contractor shall be responsible for repair of existing utilities damaged, without further charge to the owner. 3. All work to be performed by a qualified state of New York licensed electrical contractor. 4. All work to meet or exceed all local and national building code requirements. Contractor is responsible for obtaining all necessary licenses and permits required to perform all work shown on drawings. Contractor shall be required to carry workmen's compensation insurance and comprehensive general liability insurance. Certificates will be required prior to signing contracts. Contractor shall provide all

fixtures and related materials for complete installation.

- 8. Lighting shown on these plans for location only See electrical plans for details and specification
- of all lighting. Pole Lights to be on single circuit with shut off timer. Operational 9 hours to be Between Dusk -11P.M.
- 10. All light fixtures have a lead time. Contractor to call supplier to order as needed.
- See Sheet L-1.0 for Proposed Lighting Schedule, fixture character images, and additional fixture information.

& BUFFERING PLAN

Date: 11/12/2020 Scale: 1" = 10'

Sheet:

Planting Notes

- Be aware of all underground utilities prior to any planting operations. Contact "CALL BEFORE YOU DIG" prior to excavation. All plantings are to be installed by a qualified landscape contractor.
- 3. The contractor shall be required to carry workmen's compensation insurance and comprehensive general liability insurance. Certificates will be required prior to signing contracts. 4. Notify owner or landscape architect 72 hours minimum in advance of starting planting operations. Receive approval for layout of all bed lines and material locations prior to
- installation 5. The landscape architect reserves the right to reject inferior plant materials and substitutions. The landscape architect is willing to make two trips to suppliers to review and approve materials. Previously unapproved materials may be rejected at the site. Minimally, all materials will conform to the "American Standard for Nursery Stock" (ANSI Z60.1 - 2004) of the American Association of Nurserymen.
- 6. The contractor shall provide a minimum of one representative plant per variety with an attached label indicating the name, size, and origin of all plant material for the Landscape Architect's approval. The location of all plant material shall be approved by the Landscape Architect prior to planting installation.
- 8. All plant material shall have a nursery tag depicting plant species and variety.
- 9. When there is a discrepancy between plant quantities shown on the plant list & the plan, use the quantities from the plant list. 10. Test soil for ph and nutrients, adjust as required and receive approval prior to planting.
- 11. Treat all unpaved surfaces and disturbed areas with 6" minimum of topsoil as supplied by L.A. approved contractor (or equal), and blended per the following composition of 50% Screened Topsoil and 50% Compost, prior to stabilization. Fine grade and seed with approved seed blend to create finished lawn, or as otherwise directed by the Landscape Architect. . 12. Pit to be 2 times wider than root ball or widest spread of container or bare roots.
- 13. Set crown of root ball 2" above finished grade. 14. Do not add fertilizer to planting soil for fall plantings.
- 15. All plant material shall be guaranteed by the contractor to be in good, healthy and flourishing condition for a period of one year from the date of acceptance. The contractor shall replace, as soon as weather and seasonal conditions permit, all dead plants and all plants not in a vigorous, thriving condition, as determined by the landscape architect during, and at the end of the guarantee period. Warranty replacement will be provided at no cost to the owner and include materials and labor. Contractor is responsible for repair of any damage incurred during replacement of warranty materials. Warranty period to begin at the final approval of plantings by Landscape Architect and client. Contractor is responsible for maintaining the plant material until final approval is given. This will include watering the plants.

5 Cs

5 Cs

5 Cs

5 Mp

27 CV

10 ep

5 Cs

- 16. All existing and proposed vegetation shown on the site plan drawings shall be maintained in a healthy and vigorous growing condition throughout the duration of the project. All vegetation not so maintained shall be replaced with new comparable material at the beginning of the next growing season.
- 17. All plant material shall be installed in accordance with the details on the contract drawings. 18. All planting beds shall receive 3" minimum of shredded cedar or pine bark mulch. All planting beds shown shall be mulched as a continuous bed. 19. Contractor shall make fine grade adjustments as necessary, and sod to create finished lawn or as otherwise directed by landscape architect.

20. Final grade in all cases shall slope away from building a minimum of $\frac{1}{4}$ " per foot.

PLANNING BOARD CERTIFICATION
REVIEWED FOR COMPLIANCE WITH THE PLANNING BOARD

DATE

525

OWNER CERTIFICATION

THE UNDERSIGNED OWNER(S) OF THE PROPERTY SHOWN HEREON, IS FAMILIAR WITH THIS DRAWING AND ITS CONTENTS, AND HEREBY APPROVES THE SAME FOR FILING.

DATE

PLANNING BOARD APPROVAL APPROVED BY RESOLUTION OF THE LEWISBORO TOWN PLANNING BOARD DATED JUNE 18, 2019. JANET ANDERSEN. CHAIRPERSON DATE

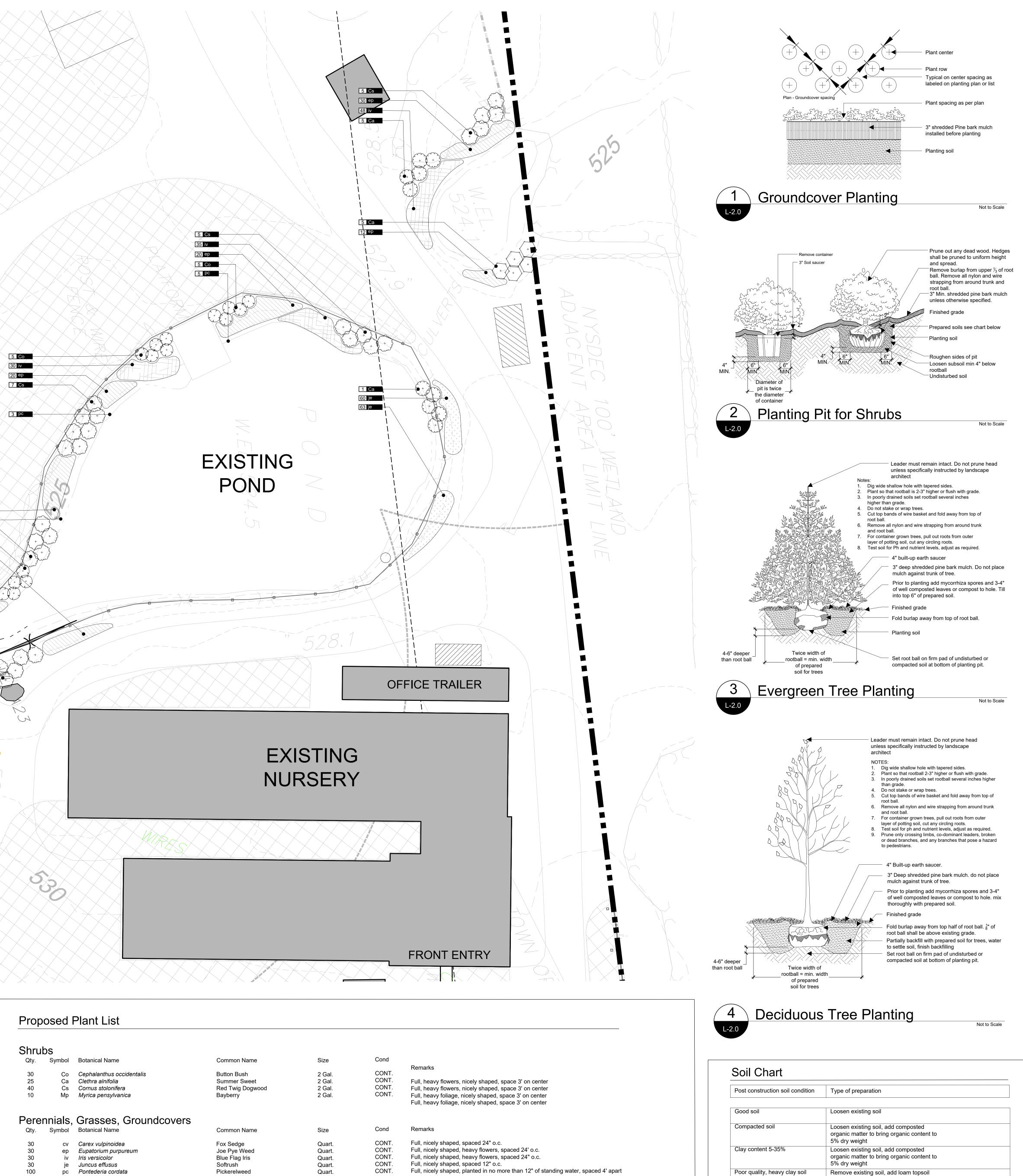
CIORSDAN CONRAN, SECRETARY

20 ep

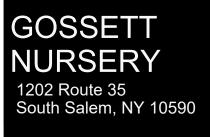
5 pc

5 Cs

5 Co


11 ep

5 ep

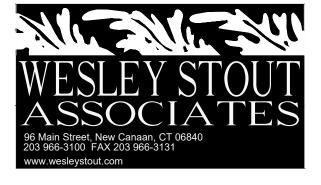

JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING, P.C. TOWN CONSULTING ENGINEER

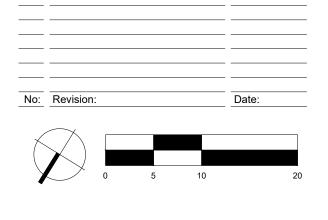
THOMAS GOSSETT GOSSETT BROTHERS NURSERY, LTD - OWNER 1202 ROUTE 35, SOUTH SALEM, NEW YORK 10509

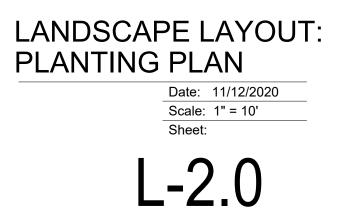
DATE

Qty.	Symbol	Botanical Name	Common Name	Size	Cond	
					CONT	Remarks
30	Co	Cephalanthus occidentalis	Button Bush	2 Gal.	CONT.	
25	Ca	Clethra alnifolia	Summer Sweet	2 Gal.	CONT.	Full, heavy flowers, nicely shaped, space 3
40	Cs	Cornus stolonifera	Red Twig Dogwood	2 Gal.	CONT.	Full, heavy flowers, nicely shaped, space 3
40	Mp	Myrica pensylvanica	Bayberry	2 Gal.	CONT.	Full, heavy foliage, nicely shaped, space 3
10	ivip .		, , , , , , , , , , , , , , , , , , ,			, , , , , , , , ,
ere	nnials,	Grasses, Groundcove	rs	C i	Cond	Full, heavy foliage, nicely shaped, space 3
	·			Size	Cond	Full, heavy foliage, nicely shaped, space 3 Remarks
ere	nnials,	Grasses, Groundcove	rs	Size Quart.	CONT.	Full, heavy foliage, nicely shaped, space 3 Remarks Full, nicely shaped, spaced 24" o.c.
ere _{Qty.}	nnials, _{Symbol}	Grasses, Groundcove Botanical Name	rs Common Name			Full, heavy foliage, nicely shaped, space 3 Remarks Full, nicely shaped, spaced 24" o.c. Full, nicely shaped, heavy flowers, spaced
ere _{Qty.} 30	nnials, _{Symbol}	Grasses, Groundcove Botanical Name Carex vulpinoidea	fS Common Name Fox Sedge	Quart.	CONT.	Full, heavy foliage, nicely shaped, space 3 Remarks Full, nicely shaped, spaced 24" o.c. Full, nicely shaped, heavy flowers, spaced Full, nicely shaped, heavy flowers, spaced
ere _{Qty.} 30	nnials, _{Symbol} cv ep	Grasses, Groundcove Botanical Name Carex vulpinoidea Eupatorium purpureum	rS Common Name Fox Sedge Joe Pye Weed	Quart. Quart.	CONT. CONT.	Full, heavy foliage, nicely shaped, space 3 Remarks Full, nicely shaped, spaced 24" o.c. Full, nicely shaped, heavy flowers, spaced

Symbol Legend


2000 miles


- Property Line
 - Proposed Planting Beds
 - Existing Tree to Remain
 - roposed Deciduous Tree
 - Proposed Evergreen Tree


Note Call-Off

I BP
 Planting Call-Off

(+) +++ $\overset{+}{0}.0$ $\overset{+}{0}.0$ $\overset{+}{0}.0$ [†]0.0 [†]0.0 [†]0.0 [†]0.0 p.o [†]o.o [†]o.o [†]o.o [†]o.o □ $\overset{+}{0}.1$ $\overset{+}{0}.1$ $\overset{+}{0}.1$ $\overset{+}{0}.1$ $\overset{+}{0}.2$ $\overset{+}{0}.4$ 0.0/0.0 0.0 0.0/0.1 0.1 0.1 0.2 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.6 0.8 0.70.0 0.0 0.0 0.1 0.2 0,4 0.6 1.1 1.2 1.0 0.8 0.8 0.8 1.3 1.8 1.4 0.0 0.0 0.1 0.2 0.5 0.8 1.1 1.2 1.0 0.8 0.8 0.8 1.0 1.1 1.1 $\dot{0}.0$ $\dot{0}.0$ $\dot{0}.1$ $\dot{0}.1$ $\dot{0}.2$ $\dot{0}.4$ $\dot{0}.6$ $\dot{0}.8$ $\dot{0}.8$ $\dot{0}.7$ $\dot{0}.7$ $\dot{0}.6$ $\dot{0}.6$ $\dot{0}.6$ $\dot{0}.7$ $\dot{0}.7$ $\overset{\circ}{0}.0 \quad \overset{\circ}{0}.1 \quad \overset{\circ}{0}.1 \quad \overset{\circ}{0}.1 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.4 \quad \overset{\circ}{0}.4 \quad \overset{\circ}{0}.4 \quad \overset{\circ}{0}.4 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.3 \quad \overset{\circ}{0}.2 \quad \overset{\circ}{0}.3 \quad \overset{\circ$ 0.0 0.0 0.1 0.2 0.4 0.7 0.7 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.10.0 0.1 0.2 0.4 0.6 0.9 P.3 1.5 1.0 0.8 0.4 0.2 0.1 0.1 0.1 0.2 b.0 b.0 b.1 b.1 b.2 b.3 b.3 b.4 b.4 b.5 b.5 b.3 b.4 b.1 b.2 b.40.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.3 0.60.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.0$ $\overset{\circ}{0}.1$ $\overset{\circ}{0}.1$ $\overset{\circ}{0}.2$ $\overset{\circ}{0}.4$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1⁺0.0 ⁺0.0 ⁺0.0 ⁺0.0 ⁺0.1 $\overset{+}{0}.0$ $\overset{+}{0}.0$ $\overset{+}{0}.0$ $\overset{+}{0}.0$ $\overset{+}{0}.0$ ⁺0.0 ⁺0.0

			GENERAL DISCLAIMER:	REVISIONS:
PLANNING BOARD CERTIFICATION	OWNER CERTIFICATION	PLANNING BOARD APPROVAL	Calculations have been performed according to IES standards and good practice Some differences between measured values and calculated results may occur due to	KLVISIONS.
REVIEWED FOR COMPLIANCE WITH THE PLANNING BOARD	THE UNDERSIGNED OWNER(S) OF THE PROPERTY SHOWN HEREON, IS FAMILIAR WITH THIS DRAWING AND ITS CONTENTS, AND HEREBY APPROVES THE SAME FOR FILING.	APPROVED BY RESOLUTION OF THE LEWISBORO TOWN PLANNING BOARD DATED JUNE 18, 2019.	Some differences between measured values and calculated results may occur due to tolerances in calculation methods, testing procedures, component performance, measurement techniques and field conditions such as voltage and temperature variations. Input data used to generate the attached calculations such as room dimensions, reflectances, furniture and architectural elements significantly affect the lighting calculations. If the real environment conditions do not match the input data, differences will occur between measured values and calculated values.	REV. >
		JANET ANDERSEN, CHAIRPERSON DATE	* LLF Determined Using Current Published Lamp Data	
			NOTE TO REVIEWER:	
JOSEPH M. CERMELE, P.E. DATE KELLARD SESSIONS CONSULTING, P.C. TOWN CONSULTING ENGINEER	THOMAS GOSSETT DATE GOSSETT BROTHERS NURSERY, LTD - OWNER 1202 ROUTE 35, SOUTH SALEM, NEW YORK 10509	CIORSDAN CONRAN, SECRETARY DATE	Total Light Loss Factor (LLF) applied at time of design is determined by applying the Lamp Lumen Depreciation (LLD) from current lamp manufacturer's catalog, a Luminaire Dirt Depreciation Factor (LDD) based on IES recommended values and a Ballast Factor (BF) from current ballast specification sheets. Application of an incorrect Light Loss Factor (LLF) will result in forecasts of performance that will not accurately depict actual results.	
			For proper comparison of photometric layouts, it is essential that you insist all designers use correct Light Loss Factors.	

	†o.0														
		⁺ 0.0	0.0												
	0.0	⁺ 0.0	⁺ 0\. 0	⁺ 0.0	⁺ 0.0										
	0.1		0.1			⁺ 0.0									
			0.1	0.1	⁺ 0.0										
_				[†] 0.1	⁺ 0.0	[†] 0.0									
L	0.6	⁺ 0.7	0.4	þ.1	⁺ 0.0	⁺ 0.0									
5	1.0	1.1	0.5	° *0 1	⁺ 0.0	⁺ 0.0									
	1.5		0.6	18	⁺ 0.1										
_	• SL3	3R 1.8	•0.7	□ ⁺ 0.2	⁺ 0.1	⁺ 0.0	⁺ 0.0								
	1.6	1.6 ⁺	⁺ 0.7	0.2	0.1	⁺ 0.0	⁺ 0.0								
	1.3	⁺ 1.2	•0.7	0.2	0.1	⁺ 0.0	⁺ 0.0								
	⁺ 0.7	⁺ 0.7	⁺ 0.5	0.2	⁺ 0.1	⁺ 0.0	⁺ 0.0								
3	⁺ 0.3	⁺ 0.3	⁺ 0.3	[†] 0.2	ō.1	⁺ 0.0	⁺ 0.0								
							⁺ 0.0	÷ 0.0							
					1	1	⁺ 0.0		⁺ 0.0						
			\sim				⁺ 0.1			⁺ 0.0	⁺ 0.0				
						1	⁺ 0.1								
	/	/			/ \	18	[†] 0.1								
, 	0.8		sL4	1 the p	+	+	0.1	+	+	+	+0.0				
	0.8	1.1		+	+	+	[†] 0.1 [†] 0.1	U.U	0.0	U.U	U.U				
							1								
							⁺ ⊂. 0				0.0				
							⁺ 0.0								
							⁺ 0.0		⁺ 0.0	[†] 0.0					
)	⁺ 0.0	⁺ 0.0	⁺ 0.0	⁺ 0.0	⁺ 0.0	⁺ 0.0	⁺ 0.0	⁺ 0.0							

JOB NAME: GOSSETT NURSERY - SOUTH SALEM MA APEX LIGHTING SOLUTIONS REFLECTANCES: N/A WORKPLANE/CALC PLANE: @ GRADE MOUNTING HEIGHT: 14FT APPS: CTR SALES: SP

Luminaire Schedule Label Arrangement Qty

1	SL2	SINGLE		3423		31.1	
1	SL3R	SINGLE	3343		30.8		
3	SL4	SINGLE	3393		30.6		
Calculation Summary							
Label			Grid Z		Avg	Max	Min
SITE	SITE				0.28	1.8	0.0
PARKING	PARKING LOT				0.50	1.8	0.0

Lumens

XX-XX-XX XXXXX

20-30 BEAVER ROAD WETHERSFIELD, CT 06109 TELEPHONE 860.632.8766 FACSIMILIE 860.632.8236 www.apexltg.com

Input Watts LLF BUG Rating

0.799 B2-U2-G2

0.799 B1-U2-G1

0.799 B1-U2-G1

Avg/Min Max/Min N.A. N.A.

N.A. N.A.

Description

PROJECT TITLE:

DRAWING TITLE: EXTERIOR LIGHTING PHOTOMETRIC CALCULATION

GOSSETT NURSERY

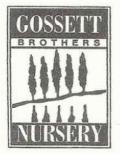
SOUTH SALEM, NY

STERNBERG 1910LEDRLM18-5P-1RND35T2-MDL03-FL/OAPT/550P515-.188/STD @ 14FT AFG TO BOF

STERNBERG 1910LEDRLM18-5P-1RND35T3R-MDL03-FL/OAPT/550P515-.188/STD @ 14FT AFG TO BOF

STERNBERG 1910LEDRLM18-5P-1RND35T4-MDL03-FL/OAPT/550P515-.188/STD @ 14FT AFG TO BOF

drawn by: CTR


SCALE : 1/16"=1'-0"

date: 11/10/20

SHEET:

SL-5

FILE NAME: SL5 GOSSETT NURSERY - SOUTH SALEM NY CALC CTR 11-10-20.dwg

COMPLETE GARDEN CENTER

T 914-763-3001 • F 914-763-9003

NURSERY, LANDSCAPING, MASONRY, EXCAVATION

www.gossettnursery.com

To: Lewisboro Planning Board

79 Bouton Rd South Salem, New York 10590 08/24/2020

GOSSETT BROTHERS NURSERY

Gossett Brothers Nursery is a seasonal garden nursery selling plants, flowers, shrubs trees and miscellaneous garden retail. Delivery of such merchandise usually occurs early morning on weekdays, most frequently before business hours. Delivery of annuals, perennials and small shrubs are taken at the far end of the parking lot and large shrubs and trees are taken behind the pond.

The nursery is open from April through December; business hours are 9 A.M. to 5 P.M. Typically, the busiest period is May through Mid-June. Peak times at the nursery take place between 10 A.M. and 2:00 P.M. on weekends, during which 8-10 parking spots are occupied plus 2-4 spaces in the back for retail employees. Mother's Day and the four weekends leading to Christmas in December are the busiest days of the year at Gossett's; a maximum of 20-25 parking spaces are filled during this time. The Nursery also hosts a farmers' market on Saturdays and Wednesdays from 9 A.M. to 1 P.M. during which time 5-10 vendors attend and park their vehicles in the back for the four hours during the market. During peak hours, the Nursery has and will continue to provide parking attendants as necessary. Gossett Brothers Nursery currently staffs three full-time employees and two part-time employees. To: Lewisboro Planning Board 79 Bouton Rd South Salem, New York 10590

09/24/20

South Salem Winery 1202 Old Post road South Salem, New York 10590

South Salem Winery is a licensed NYS micro winery. Making wine from at least 80% NYS grapes . The winery will offer wine tastings and pairings, wine by the glass, and food (as required by the State Liquor Authority). Wine tastings will be by appointment only. We estimate 2-4 parking spaces will be needed during tastings and 6-8 parking spaces for events. The winery will be open from April through December. Business hours for the winery will be Friday Saturday and Sunday from 3:00 PM to 8:00 PM. The winery will have seating for 25 people and handicap access. Private events will be offered after nursery hours from 5pm to 10pm. The winery will produce approximately 600 gallons of NYS wine per year. The NYS grape harvest usually takes place from mid September to mid October during this all the wine for the year is made. All of which will be sold directly out of the winery/nursery. The winery has two full time employees . Apart from wine and food, SSW t-shirts and wine glasses will be offered for retail sale. The winery will offer food of substance as required by SLA law. Examples of these foods will be charcuterie, cheese plates and other light fare.

AFFIRMATION OF MAILING OF PUBLIC HEARING NOTICE

MICHAEL FULLER SIRIGNANO, an attorney duly admitted to practice in the Courts of the State of New York, affirms the following to be true under penalties of perjury:

Affirmant is not a party to these applications, is over 18 years of age, and maintains his law office in Cross River, New York.

That on 30th day of November, 2020 Affirmant served true copies of the within document(s), to wit: Notice of Public Hearing to be conducted by the Townof Lewisboro Planning Board in the Application by Thomas Gossett Revocable trust for Site Development Plan Approval (Cal #03-20 PB) and Wetland Permit (Cal #37-20 WP).

upon the persons or attorneys indicated below, and at the address(es) indicated in the annexed List, in the following manner:

 \underline{X} by mailing the same in a sealed envelope, with postage prepaid thereon, in a post office or official depository of the United States Postal Service, within the State of New York, addressed as indicated below;

 \underline{X} by certified mail, return receipt requested (and annexed), similarly posted;

by delivering the same personally by hand to the person(s) and at the address(es) indicated;

by Facsimile Service

via Federal Express AND ALSO BY MAIL

MICHAEL FULLER SIRIGNANO

Affirmed to be True: Cross River, New York November 30, 2020 Patricia G. & John Beltramello, Jr. Trustee 4625 Lightkeepers Way, Apt. 7F Little River, SC 29566

Marylix V. Zappia 1195 Route 35 South Salem, NY 10590

South Salem Fire Department PO Box 191 South Salem, NY 10590

Town of Lewisboro 11 Main Street South Salem, NY 10590

Paul and Lynne Geaney 47 Bouton Road South Salem, NY 10590

Benjamin & Thomas Belloni Arwen Belloni 1205 Route 35 South Salem, NY 10590

Ronnie W. and Lancelot C. A. Thompson, Jr. 1185 Route 35 South Salem, NY 10590

Maria & Javier Valencia 1196 Route 35 South Salem, NY 10590

Rahul & Rampal Poonam Lakhanpal 1191 Route 35 South Salem, NY 10590

Beverly B. & Mizell Wilson, Jr. 57 Bouton Road South Salem, NY 10590 Christopher Lillis and Carolyn Meatto 47 Spring Street South Salem, NY 10590

Kenneth Jacobson 46-20 216th Street Bayside, NY 11361

Peter M. and Jane E. Brady 45 Bouton Road South Salem, NY 10590

Javaheri & Beigi Pargol Homayoon Saatchi 49 Bouton Road South Salem, NY 10590

Armando G. & Aso Jimenez Machiko Jimenez 1193 Route 35 South Salem, NY 10590

Farvue Farm LLC c/o Bonnie Orleans 8308 Lilac Lane Alexandria, VA 22308

Priscilla Lugo & Peter R. McCue, III 1203 Route 35 South Salem, NY 10590

Stephen N. & Melissa H. Leavy PO Box 33 South Salem, NY 10590

Scott & Michelle Sobocinski 69 Spring Street South South Salem, NY 10590

Michael & Corrie Liffland 1187 Route 35 South Salem, NY 10590

TOWN OF LEWISBORO

NOTICE OF PUBLIC HEARING

<u>NOTICE IS HEREBY GIVEN</u> that the Planning Board of the Town of Lewisboro, Westchester County, New York will convene a Public Hearing on Tuesday, December 15, 2020 at 7:30 p.m., or soon thereafter, using the videoconferencing app Zoom, regarding the following:

Cal #03-20PB, Cal #37-20WP

Application for Site Development Plan Approval and Wetland Permit to Gossett Brothers Nursery at 1202 Route 35, South Salem, NY 10590, Sheet 31, Block 10805, Lot 46 (Thomas Gossett Revocable Trust, owner of record) for an existing landscape nursery to formalize its existing nursery use, establish a 30-seat accessory winery, install a water treatment system and wastewater holding tank for the winery. The subject property consists of approx. 5.5 acres and is located in a Two-Acre Residential (R-2A) Zoning District.

Due to public health and safety concerns related to the COVID-19 virus, the Planning Board will not be meeting in person. Per Governor Cuomo's Executive Order No. 202.1, this meeting will be held via Zoom and a transcript will be provided at a later date. The public will have the opportunity to review digital copies of materials and proposed site documents at <u>https://www.lewisborogov.com/planningboard</u>

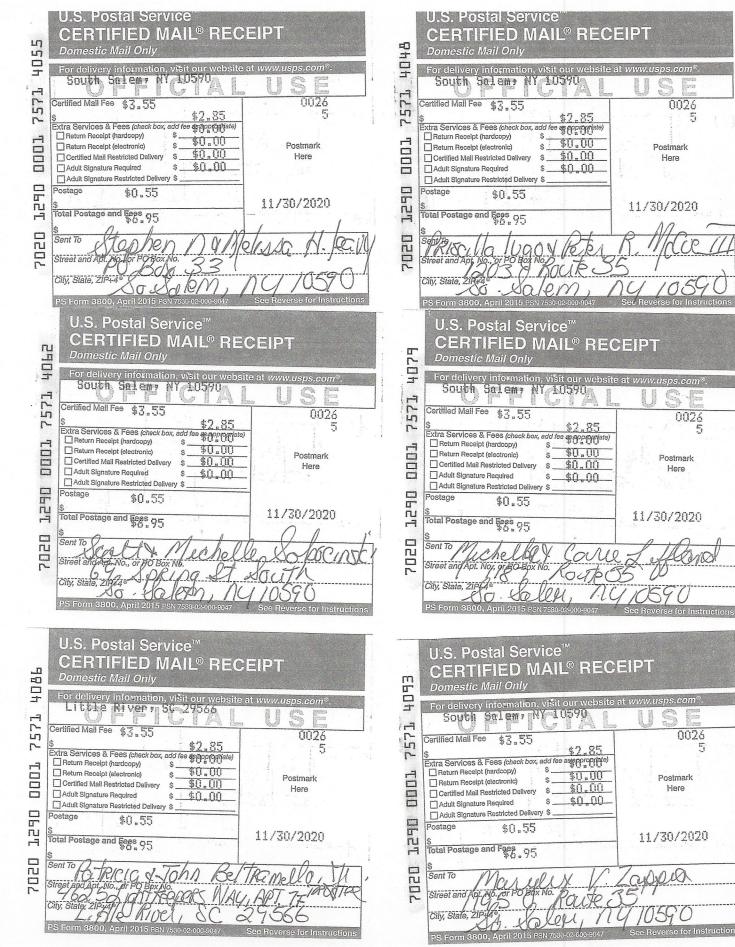
Interested members of the public are encouraged to provide written comments prior to and during the virtual public hearing by emailing Ciorsdan Conran, Planning Board Administrator, at <u>planning@lewisborogov.com</u> Please check the meeting agenda posted on the Board's web page for additional instructions and updates.

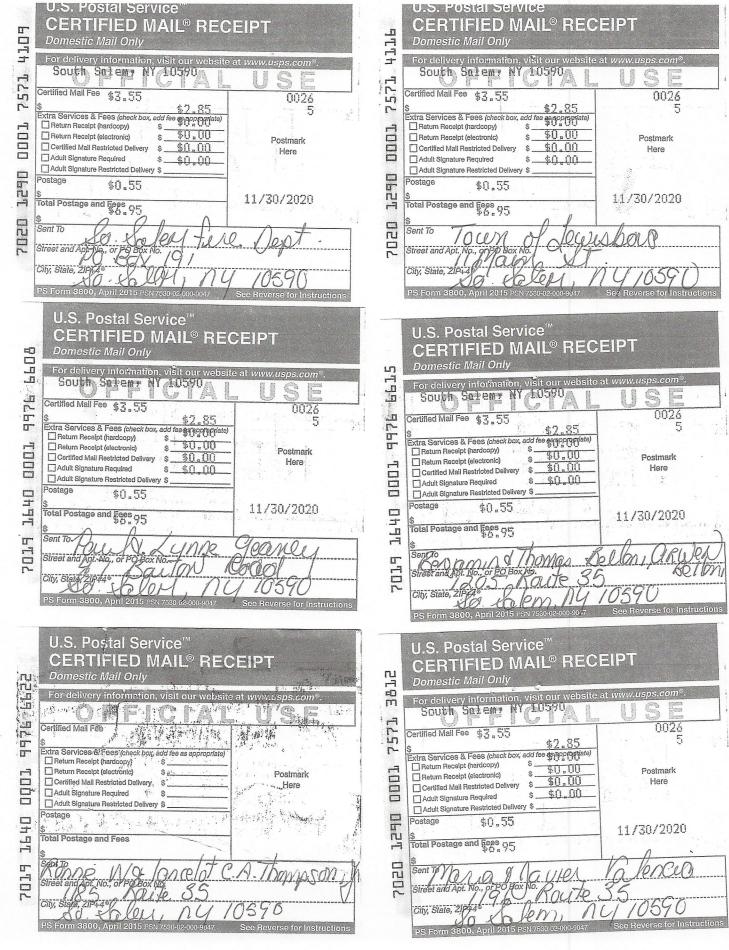
The public may view or participate through the Zoom app at

https://zoom.us/j/98541138858?pwd=Y1VidHA1dXJjaXBTR0RTdFJjcUlFdz09

by clicking "Join a Meeting," and entering Meeting ID: 985 4113 8858 Passcode: 515716. You may call in to the Zoom meeting at 1-929-205-6099 when prompted, enter Meeting ID: 985 4113 8858 Passcode: 515716.

Persons wishing to object to the application should file a notice of objection with the Planning Board together with a statement of the grounds of objection prior to the closing of the Public Hearing. All interested parties are encouraged to view the Public Hearing and all will be provided an opportunity to be heard.


> PLANNING BOARD TOWN OF LEWISBORO By: Janet Andersen Chair


Dated: November 23, 2020

The Town of Lewisboro is committed to equal access for all citizens. Anyone needing accommodations to view or participate in this meeting is encouraged to notify the Administrator to the Planning Board in advance.

U.S. Postal Service U.S. Postal Service CERTIFIED MAIL® RECEIPT CERTIFIED MAIL® RECEIPT r Domestic Mail Only F -0 F E For delivery information, visit our website at www.usps.com^o. South Selem, NY 10590 L USE For delivery information, visit our website at www.usps.com®. (inter 1:4) |-57J 571 Certified Mail Fee \$3.5 0028 Certified Mall Fee \$3.55 (C) 0026 \$2.85 5 \$ 47 28 Extra Services & Fees (check box, add fee as appropriate ☐ Return Receipt (hardcopy) \$ _____\$ 111 5 5 Extra Services & Fees (check box, add fee as application) Return Receipt (hardcopy) 1/1 TOOD Sal \$0.00 TO \$0.00 Postmark Return Receipt (electronic) Postmark \$0.00 Certified Mail Restricted Delivery Certified Mail Restricted Delivery Here S \$0.00 Here Ada Signature Required \$. \$0,00 Adult Signature Required \$0.00 Adult Signature Restricted Delivery \$ 1290 \$0.55 Postage Postage 10518 1231 \$0.55 CTTO 11/30/2020 s Total Postage and Fees \$4 . 95 Total Postage and Page 95 11/30/2020 A I BENNETA App. No., or PO Box No., ZIP+40 7020 Sent To STOP ND NEK PO Box No. CardynMatio П 11 acox LISV 20 Street 670 No., SPRING ST dl City, State ZIP+4 City, S 36 NY 10590 D. (Se auside PM 11 1 U.S. Postal Service U.S. Postal Service[™] **CERTIFIED MAIL® RECEIPT** 1000 CERTIFIED MAIL® RECEIPT 4017 Domestic Mail Only For delivery information, visit our website at www.u For delivery information, visit our web 577 173 C. 571 Certified Mail Fee Certified Mail Fee \$3.55 GRO P 1. 22 1. 5
 Stra Services & Fees (check box, edd fee as appropriate)

 Return Receipt (hardcopy)
 P-Extra Services & Fees (ch box, add fee as appropriate 1000 2020 Return Receipt (hardcopy) Return Receipt (electronic) 0001 win min \$. Postmark Return Receipt (electronic 40 nji Certified Mail Restricted Delive Postmark Certified Mail Restricted Delivery Adult Signature Required Here Here \$0.00 Add Add A Gunature Required Adult Signature Restricted Delivery 1290 Adult Signature Restricted Postage \$0.55 \$ 10518 Postage S Total Postage and Fees . 95 é \$ Total Postage and Fees 11/30/2020 п 10518-1 F L L L Sent To g/s Sent. 202 nu KON NO. C and Apt. No., g EO Box Nd City, State, ZIP+4 P OGELTON orm 3800, April 2015 PS City, State, ZIP+49) eM 10591 6 1059(No opl. L 80 everse for Instructions e Reverse for Instructions U.S. Postal Service[™] . 51 CERTIFIED MAIL® RECEIPT U.S. Postal Service" 1 CERTIFIED MAIL® RECEIPT Domestic Mail Only LU. 110 H For delivery information, visit our website at www.usps.cc FE Domestic Mail Only NOFE For delivery information, visit our website at www.usps.com^o. Certified Mail Free 571 L L L AND AND THE REAL OF. 19 7571 r 0026 S Extra Services & Fees (check box, add fee as epp I Return Receipt (hardcopy) \$3.55 - Tono Certified Mail Fee -19 5 \$2.85 Extra Services & Fees (check box, add fee asator (1)) Return Receipt (hardcopy) \$ Certified Mail Festricted Delivery Postmark Postmark Adult Signature Required \$ 11 Return Receipt (electronic) Here \$0.00 Adult Signature Restricted Delivery \$. Here Certified Mail Restricted Delivery 00 \$0,00 Adult Signature Required bstage Adult Signature Restricted Delivery \$ 11. 4 TL Jotal Postage and Fees 1290 \$0.55 Postage 11/30/2020 Total Postage and Res. 95 B 0 lamond 701 iet and right. No., 05 PO BOKNO. State, ZIP-40 PL C. Caple 7020 Sent To ORIEO IP nd GP Street a A shem 111 059 1230 City, mala NA 10 e Reverse for Instructions

O.S. POSIAI Service CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com? South Salemy NY 20590 Certified Mail Fee \$3.55 Out of the sale	U.S. Postal Service CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com® SDUBI SHISMY NY CU390 LUSE Certified Mail Fee \$3.55 Extra Services & Fees (check box, add fee & gpprgrate) Return Receipt (hardcopy) \$ Return Receipt (hardcopy) \$ Return Receipt (lectronic) \$ Return Receipt (lectronic) \$ Return Receipt (lectronic) \$ Adult Signature Required \$ Adult Signature Restricted Delivery \$ Destance \$ 0.55
и <u>s</u> Total Postage and Sees. 95 е \$6.95	Postage \$0.*55 s 11/30/2020 rd Total Postage and Sees. 95
Sent To Rehul & Ramph Portan QETTING Street and Apil No., or PO Box Nu City, State 219-40 PS Form 3800, April 2015 PSN 7580-02 000-9047 See Reverse for Instructions	Sireet and Apt. No. for PP Box Nut Street and Apt. No. for PP Box Nut City, Stated 21P+4% Control (10690) PS Form 3800, April 2015 PSN 7530-02-000-90+7 See Reverse for Instructions

Form BZ-BA-5-8/63-500

APPL. NO. 19-63

TOWN OF LEWISBORO WESTCHESTER COUNTY NEW YORK

BUILDING ZONE ORDINANCE

October 18 19 63

To the Building Inspector and the Board of Appeals of the Town of Lewisboro, Westchester County, New York:—

TAKE NOTICE that I

Name

Ralph Bratberg Jr.

Hereby appeal to the Board of Appeals from the decision of the Building Inspector of the said Town of Lewisboro—

In the matter of the denial of an application to construct a greenhouse on Lot 46 in Block 10805

I hereby file with you this notice hereof

Dated October 18 1963

Ralph Butber J.

Residing at

Minutes of the Board of Appeals of the Town of Lewisboro

Meeting held on Tuesday, November 19, 1963, at 8:30 P.M. in the Town House, South Salem, New York.

Present: Messrs. Morgan Parker, Chairman, Oliver J. Peck, Robert F. Neukirch, William Rowedder and John Benish. Absent: None.

The minutes of the preceding meeting held on the 12th day of November, 1963, having been previously approved by the members of the Board, reading at this meeting was waived.

CASE BEFORE THE BOARD

Cal. 19-63-BZ Applicant:

Ralph Bratberg, Jr., owner of the premises in question.

Subject: An application for a special permit under Article %VI, Section 2(v) of the Zoning Ordinance of the Town of Lewisboro to permit the construction of a greenhouse in connection with the operation of a nursery in an R-2 district for which he held a special permit previously granted by this Board.

Premises affected:

Property located on the northerly side of Route 35, South Salem, New York, designated on the Tax Map of the Town of Lewisboro as Lot No. 46 in Block No. 10805 on Sheet No. 31.

Appearances:For applicant:Ralph Bratberg, Jr., owner and applicant herein.
A. Cuoco, as an immediately affected landowner.In opposition:None.As a friendWestchester County Planning Board, by communica-
tion dated November 14, 1963, no recommendation.

Action of the Board:

Special permit granted.

The Resolution: WHEREAS, Ralph Bratberg, Jr., the applicant herein, did on the 21st day of October, 1963, file with this Board an application for a special permit under Article XVI, Section 2(v) of the Zoning Ordinance of the Town of Lewisboro to permit the construction and operation of a greenhouse in connection with a nursery on the premises in question presently operating under special permit previously granted by this Board, on property located on the northerly side of Route 35, South Salem, New York, and shown on the Tax Map of the Town of Lewisboro as Lot No. 46 in Block No. 10805 on Sheet No. 31, in an R-2 district; and

WHEREAS, the lot in question is well known to this Board; and

WHEREAS, after due notice and publication in the official paper of the Town of Lewisboro on the 14th day of November, 1963, public hearing thereon was held on the 19th day of November, 1963; and

SHERMAS, Ralph Bratberg, Jr., the applicant herein, appearing before the Board at the said hearing, did explain that the operation of the nursery for which the Board had previously granted him a special permit, needed a greenhouse for starting certain plants earlier in the spring than could be done in the open and for their further occasional necessary protection, and that it would not be a hothouse and would have no artificial heating plant, but would depend on the sum for such heat as it would need, in accordance with the usual practice for greenhouses: and

WHEREAS, upon questioning, the apolicant did further explain that because of the necessity for sunlight for good growing, as explained, such a greenhouse would need to be on the south side rather than the north side of the existing shed, that it would have an eight inch block foundation with curved glass construction at appropriate corners and would stand behind the nursery crops in front so that it would either not show or would have a good appearance from the road, and that it would be about ten feet high, or two to three feet lower than the existing shed, and would be about twenty-five feet wide by thirtyfive feet long; and

MEREAS, A. Cuoco, as an immediately affected neighbor having a residence directly across Route 35 from the property in question, did state that he had no objection to such a greenhouse, and there were no other witnesses present either in objection to or in favor of the permit sought; and

WHEREAS, the Mestchester County Planning Board did by post card dated November 14, 1963, make no recommendation with regard to the granting of the permit sought; and

"HEREAS, the Board having given consideration to all the evidence before it finds that the proposed greenhouse is desirable for the full operation of the present nursery, that it should be placed on the southern side of the present shed as requested, that it will not affect the surrounding residential property and that no useful purpose would be served by denial of the permit requested:

Now, therefore, be it

BeSCLV D that the special permit sought be and it is hereby granted for the duration of the present special permit for the nursery involved, and the Building Inspector be and he is hereby authorized to issue certificates of construction and occupancy accordingly.

Il members concurring.

le ordered this loth day of Gecember, 1963.

arker,

TOWN OF LEWISBORO WESTCHESTER COUNTY, N. Y.

ZONING BOARD OF APPEALS South Salem, N. Y.

weld and an

Telephone SOuth Salem 3-3511

201

NOTION IS HERES! SIVEN that the Zoning Board of Appeals of the Town of Lewisbaro will bold a public hearing on November 19th, 1963, at 8:30 F.M. at the Town House, Jouth Salem, New York to consider the following:

CAL. 119-63 B.Z.

Application of Hulph Bratborg, Jr., owner, of South Sales, How York for a special permit under Article XVI, Section 2 (v) of the Soning Orainance of the Town of Lewiscope to permit the construction of a greenhouse for growing and display of plants on property located in an Se2 District. The property is located on the northerly side of Houte #35, South Sales, N. Y. and designated on the Yax Hap of the Town of Lewiscope as Let 46, in Block 10805, on Sheet 31.

At such hearing all interested parties may attend and will be heard.

ZONIES BOARD OF AFFEALS TOWN OF LEMISBORD Norgan Farker, Chairman

Bated at South Sales, New York this 14th day of Sevenber, 1963.

ZONING LOARD OF APPEALS

TOUL OF LEVISLOPO

Cal. No. 9-73 D.T.

, ,

In the Matter of

ъ. т. u

and a sure

1

St of Days

Application of Falph Bratherg, 5r., South Sales, N.Y., for a Special Permit pursuant to /rticle 2VI, Section 2 (v) of the Zoning Ordinance of Lewisloro.

Public Hearing held on June 13, 1973, at &:30 P.M. at the Town House, South Salem, N.Y.

Board Nembers present:

William Rowedder, Chairman Russell Raynor, Paul Lewis, Averill Williams, Enzo Allegretti

10805-46

Alsent: None

Appearances:

For Applicant: Palph Bratherg, Jr. as the applicant

In Opposition: Mone

References:

Transcript of testinony prescribed at the hearing consisting of 2 jages

Action of the loard: Special Permit renewed

The Vote:

Mature of Application - Findings and Conclusion

This is an application for renewal of a special permit for sales and display office for a nursery operation on property located on the northerly side of Route Ro. 35, South Salem, N.Y. which is designated on the Tax Lap of the Town of Lewisboro as Lot 46, in Block 10805, on Sheet 31, in an R-2 (2 acre) Residential District. The property is could by Halph, Jr. and Joan T. Eratherg, South Salem, N.Y.

The Board heard Mr. Dratberg as the applicant in support of his application who stated that he wishes to continue the nursery operation in the same manner as permitted under previous permits. No objection to the renewal of permit was placed before the Board. The Board finds that the operation conducted by applicant was first authorized by its resolution dated 2/23/1661 (Cal. 1-61); the permit was renewed on 1/7/63 (Cal. 14-62). On December 16, 1963, permit for construction of a greenhouse was issued, (Cal. 19-63) in connection with the nursery conducted by applicant. The special use permit was kept valid by a further extension under Cal. 1-68. The Board determines that if all the conditions of the original permit with renewals were continued, no objection to the renewal sought under this application would exist and that the granting thereof will hot be inconsistent with the provisions of the Ordinance.

It is therefore Resolved that the renewal of the permit sought be and it is hereby granted in accordance with Article XVI, Section 2 (v) of the Ordinance.

5

۶,

Dated: South Saler, N.Y. June 26, 1973

10 - 2 - 1

Villiar Toweccer, Chairman

NOTICE OF HEARING

NOTICE IS HERENY GIVEN that the Zoning Board of Appeals of the Town of Lewisboro will hold a Public Hearing at the Town House, Main Street, South Salem, N. Y. on June 13th, 1973, at 8:30 P.N. on the following: CAL. $\pm 9-73$ P.Z.

Application of Ralph Bratberg, Jr., South Salem, N. Y. for a Special Permit pursuant to Article XVI, Section 2(v) of the Zoning Ordinance, for a renewal of a special permit for sales and display office for a nursery operation. The property is located on the northerly side of Route #35, South Salem, N. Y., designated on the Tax Map as Lot 46, in Block 10805, on Sheet 31, in an R-2 (2 acre) Residential District.

At such hearing all interested parties may attend and will be heard.

ZONING BOARD OF APPEALS TOWN OF LEWISBORO WILLIAM ROWEDDER, CHAIRMAN. 1

Dated at South Salem, N. Y. this 24th day of May, 1973.

Mallen

LAW OFFICES OF

SNYDER & SNYDER, LLP

94 WHITE PLAINS ROAD TARRYTOWN, NEW YORK 10591 (914) 333-0700 FAX (914) 333-0743

WRITER'S E-MAIL ADDRESS

msheridan@snyderlaw.net

November 17, 2020

ONE GATEWAY CENTER, SUITE 2600 NEWARK, NEW JERSEY 07102 (973) 824-9772 FAX (973) 824-9774

REPLY TO:

NEW JERSEY OFFICE

Tarrytown office

Hon. Chair Janet Andersen and Members of the Planning Board Town of Lewisboro 79 Bouton Road

South Salem, NY 10590

RE: Special Use Permit Approval and Renewal (Cal. #10-10 P.B.) New York SMSA Limited Partnership d/b/a Verizon Wireless' Existing Wireless Telecommunications Facility on the Tower Located at 377 Smith Ridge Road, Lewisboro, New York ("Property")

Dear Honorable Chair Andersen And Members of the Planning Board:

We are the attorneys for New York SMSA Limited Partnership d/b/a Verizon Wireless ("Verizon Wireless") in connection with its application to renew the special use permit ("Renewal") for its existing public utility wireless telecommunications facility ("Facility") at the Property. In connection with the foregoing, we are in receipt of a memo dated November 12, 2020, from the Planning Board's consultant, Kellard Sessions ("Consultant Memo"), which contain comments with regard to the requested Renewal.

In response to the comments contained in the Consultant's Memo, kindly note the following:

Comment

1. On Page 1 of 3 of the Short Environmental Assessment Form (EAF), the applicant shall respond to Question 3 numerically. "NA" is not a sufficient response.

Response

Attached hereto as Exhibit 1 is a revised Short EAF, which now includes a numerical response to Question 3.

Comment:

2. On behalf of the Planning Board, the applicant shall submit Part 2 of the Short EAF.

NEW YORK OFFICE 445 PARK AVENUE, 9TH FLOOR NEW YORK, NEW YORK 10022 (212) 749-1448 FAX (212) 932-2693

LESLIE J. SNYDER ROBERT D. GAUDIOSO

DAVID L. SNYDER (1956-2012)

Response:

Attached hereto as part of Exhibit 1 is Part 2 of the Short EAF.

Comment:

3. We note that the submitted Structural Report prepared by Structural Consulting Services, P.C., does not certify the structural integrity of the tower and the equipment attached to it. The report makes reference to a previous report prepared by another engineering firm and states that based on a site visit "...the existing antenna loading observed on the tower <u>appeared</u> to match the loading use in the most recent structural analysis report on the tower...,". It is recommended that a more definitive certification be provided and that any referenced reports be submitted.

Response:

Attached hereto as Exhibit 2 is a revised structural certification, prepared by Structural Consulting Services, P.C., with a revised date of November 13, 2020, that has been updated to note that "[t]he existing antenna loading observed on the tower is consistent with the antenna loading in the most recent structural analysis report on the monopole." Such certification now also includes a copy of the most recent structural analysis prepared for InSite Towers, LLC dated March 11, 2020.

Comment

4. Consistent with past actions of the Board on similar antenna renewal applications, provided the above information in submitted and is satisfactory, it is recommended that the Special Use Permit Renewal for Verizon Wireless be approved indefinitely.

Response:

This comment requires no response.

Based on the foregoing, it is respectfully requested that this Honorable Board approve of the requested Renewal. If you have any questions, please do not hesitate to contact me or Leslie Snyder at (914) 333-0700.

Respectfully submitted, Snyder & Snyder, LLP

By:

Michael P. Sheridan

MS: sm Enclosures cc: Verizon Wireless

Z:\SSDATA\WPDATA\SS4\WP\NEWBANM\Joe Rollins\LTE Zoning Analyses\East Woods\Special Permit Renewal 2020\PB Response Letter 11.17.2020.ms.doc

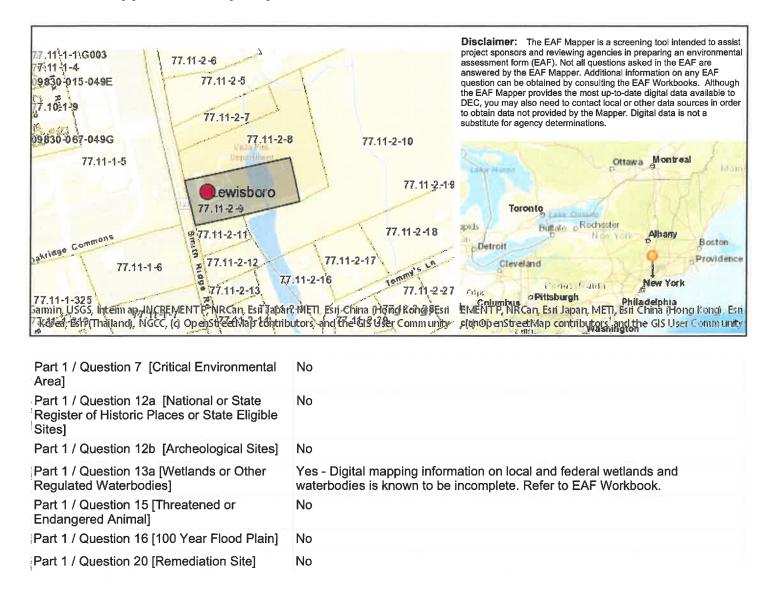
EXHIBIT 1 Revised EAF with Part 2

,

Short Environmental Assessment Form Part 1 - Project Information

Instructions for Completing

Part 1 – Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.


Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

Part 1 – Project and Sponsor Information							
Name of Action or Project:							
Verizon Wireless Special Permit Renewal for Existing Public Utility Wireless Telecommunicat	ions Facility						
Project Location (describe, and attach a location map):							
377 Smith Ridge Road, Lewisboro, NY							
Brief Description of Proposed Action:							
The proposed action consists of the renewal of the special permit (Cal. #10-10PB) for Verizor telecommunications facility ("Facility") at the subject property.	n Wireless' existing public utili	ty wireless					
Name of Applicant or Sponsor:	Telephone: 914-333-0700	D					
New York SMSA Limited Partnership d/b/a Verizon Wireless	E-Mail: msheridan@snyc	derlaw.net					
Address:							
c/o Snyder & Snyder, LLP, 94 White Plains Road							
City/PO:	State:	Zip Code:					
Tarrytown	New York	10591	1				
1. Does the proposed action only involve the legislative adoption of a plan, loca administrative rule, or regulation?	il law, ordinance,	NO	YES				
If Yes, attach a narrative description of the intent of the proposed action and the e may be affected in the municipality and proceed to Part 2. If no, continue to ques		at 🔽					
2. Does the proposed action require a permit, approval or funding from any other	er government Agency?	NO	YES				
If Yes, list agency(s) name and permit or approval:		\checkmark					
3. a. Total acreage of the site of the proposed action? ~0.08 acres b. Total acreage to be physically disturbed? 0 acres c. Total acreage (project site and any contiguous properties) owned or controlled by the applicant or project sponsor? ~0.08 acres							
4. Check all land uses that occur on, are adjoining or near the proposed action:							
5. 🗌 Urban 🔲 Rural (non-agriculture) 🗌 Industrial 🔲 Commercial 🗹 Residential (suburban)							
Forest Agriculture Aquatic I Other(Specify): Wireless Telecommunications Facility							
Parkland							

5.	Is	s the proposed action,	NO	YES	N/A
	a	A permitted use under the zoning regulations?			
	b	. Consistent with the adopted comprehensive plan?			
				NO	YES
6.	15	the proposed action consistent with the predominant character of the existing built or natural landscape?			
7.	Is	the site of the proposed action located in, or does it adjoin, a state listed Critical Environmental Area?		NO	YES
If	Yes	, identify:		\checkmark	
				NO	YES
8.	a.	Will the proposed action result in a substantial increase in traffic above present levels?			
	b.	Are public transportation services available at or near the site of the proposed action?			
	c.	Are any pedestrian accommodations or bicycle routes available on or near the site of the proposed action?			
9.	D	oes the proposed action meet or exceed the state energy code requirements?		NO	YES
If	he j	proposed action will exceed requirements, describe design features and technologies:			
The	Fac	ility meets the state energy code requirements.			
10	W	'ill the proposed action connect to an existing public/private water supply?		NO	YES
		If No, describe method for providing potable water:			
The	Fac	ility is unmanned therefore potable water is not required.		\checkmark	
11.	W	ill the proposed action connect to existing wastewater utilities?		NO	YES
	_	If No, describe method for providing wastewater treatment:			
Ine	⊦ac	ility is unmanned therefore wastewater treatment is not required.		\mathbf{V}	
12.	a.	Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district		NO	YES
wh	ich	is listed on the National or State Register of Historic Places, or that has been determined by the issioner of the NYS Office of Parks, Recreation and Historic Preservation to be eligible for listing on the	ľ		
		Register of Historic Places?	ŀ		
	hae	. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for ological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?		✓	
13.		Does any portion of the site of the proposed action, or lands adjoining the proposed action, contain etlands or other waterbodies regulated by a federal, state or local agency?		NO	YES
	b.	Would the proposed action physically alter, or encroach into, any existing wetland or waterbody?	ŀ	H	
If Y	ζes,	identify the wetland or waterbody and extent of alterations in square feet or acres:			
-					

* N/A to renewal of special permit for existing Facility.

14. Identify the typical habitat types that occur on, or are likely to be found on the project site. Check all that apply:						
Shoreline Forest Agricultural/grasslands Early mid-successional						
Wetland Urban Suburban						
15. Does the site of the proposed action contain any species of animal, or associated habitats, listed by the State or	NO	YES				
Federal government as threatened or endangered?						
16. Is the project site located in the 100-year flood plan?	NO	YES				
17. Will the proposed action create storm water discharge, either from point or non-point sources?	NO	YES				
If Yes,						
a. Will storm water discharges flow to adjacent properties?						
b. Will storm water discharges be directed to established conveyance systems (runoff and storm drains)? If Yes, briefly describe:						
18. Does the proposed action include construction or other activities that would result in the impoundment of water	NO	YES				
or other liquids (e.g., retention pond, waste lagoon, dam)?	140	1150				
If Yes, explain the purpose and size of the impoundment:						
19. Has the site of the proposed action or an adjoining property been the location of an active or closed solid waste	NO	YES				
management facility?						
If Yes, describe:						
	ليستعم					
20.Has the site of the proposed action or an adjoining property been the subject of remediation (ongoing or completed) for hazardous waste?	NO	YES				
If Yes, describe:						
I CERTIFY THAT THE INFORMATION PROVIDED ABOVE IS TRUE AND ACCURATE TO THE BEST OF MY KNOWLEDGE						
1 6						
Signature: Thur Parcer Title: Fine. Engineer - NTM	IK KU	te				
·····	Car	T				

Agency Use Only [If applicable]

Project: Date:

Short Environmental Assessment Form Part 2 - Impact Assessment

Part 2 is to be completed by the Lead Agency.

Answer all of the following questions in Part 2 using the information contained in Part 1 and other materials submitted by the project sponsor or otherwise available to the reviewer. When answering the questions the reviewer should be guided by the concept "Have my responses been reasonable considering the scale and context of the proposed action?"

		No, or small impact may occur	Moderate to large impact may occur
1.	Will the proposed action create a material conflict with an adopted land use plan or zoning regulations?	\checkmark	
2.	Will the proposed action result in a change in the use or intensity of use of land?	\checkmark	
3.	Will the proposed action impair the character or quality of the existing community?	\checkmark	
4.	Will the proposed action have an impact on the environmental characteristics that caused the establishment of a Critical Environmental Area (CEA)?	V	
5.	Will the proposed action result in an adverse change in the existing level of traffic or affect existing infrastructure for mass transit, biking or walkway?	\checkmark	
6.	Will the proposed action cause an increase in the use of energy and it fails to incorporate reasonably available energy conservation or renewable energy opportunities?	\checkmark	
7.	Will the proposed action impact existing: a. public / private water supplies?	\checkmark	
	b. public / private wastewater treatment utilities?	\checkmark	
8.	Will the proposed action impair the character or quality of important historic, archaeological, architectural or aesthetic resources?	\checkmark	
9.	Will the proposed action result in an adverse change to natural resources (e.g., wetlands, waterbodies, groundwater, air quality, flora and fauna)?	\checkmark	
10.	Will the proposed action result in an increase in the potential for erosion, flooding or drainage problems?	\checkmark	
11.	Will the proposed action create a hazard to environmental resources or human health?	\checkmark	

Agency Use Only [If applicable]				

Short Environmental Assessment Form Part 3 Determination of Significance

For every question in Part 2 that was answered "moderate to large impact may occur", or if there is a need to explain why a particular element of the proposed action may or will not result in a significant adverse environmental impact, please complete Part 3. Part 3 should, in sufficient detail, identify the impact, including any measures or design elements that have been included by the project sponsor to avoid or reduce impacts. Part 3 should also explain how the lead agency determined that the impact may or will not be significant. Each potential impact should be assessed considering its setting, probability of occurring, duration, irreversibility, geographic scope and magnitude. Also consider the potential for short-term, long-term and cumulative impacts.

	Signature of Responsible Officer in Lead Agency	Signature of Preparer (if different from Responsible Officer)				
Prin	at or Type Name of Responsible Officer in Lead Agency	Title of Responsible Officer				
-	Name of Lead Agency	Date				
✓	 environmental impact statement is required. Check this box if you have determined, based on the information and analysis above, and any supporting documentation that the proposed action will not result in any significant adverse environmental impacts. 					
	Check this box if you have determined, based on the information and analysis above, and any supporting documentation, that the proposed action may result in one or more potentially large or significant adverse impacts and an environmental impact statement is required.					

PRINT FORM

EXHIBIT 2 Revised Structural Certification

Revised November 13, 2020 October 5, 2020

Honorable Chair Janet Andersen And Members of the Planning Board Town of Lewisboro 79 Bouton Road South Salem, NY 10590

 RE: New York SMSA Limited Partnership d/b/a Verizon Wireless Site: East Woods
 377 Smith Ridge Road, South Salem, NY 10590 Section 50A; Block 9834; Lots 84, 88 & 94

Honorable Chair Janet Andersen and Members of the Planning Board:

On Friday, September 25, 2020, our office visited the above referenced site to review the existing Telecommunications Facility by New York SMSA Limited Partnership d/b/a Verizon Wireless. The existing facility consists of a 150-foot monopole with antennas mounted thereon and a prefabricated equipment shelter located at the base thereof within a fenced compound together with related transmission lines, conduits, utility connections, etc. The existing antenna loading observed on the monopole is consistent with the antenna loading used in the most recent structural analysis report on the monopole prepared for InSite Towers, LLC by Bennett & Pless, Inc., Boca Raton, FL 33487, dated March 11, 2020 (copy attached), which deemed the existing monopole and its foundation to have sufficient capacity to support the antenna loading. At the time of our visit, the existing monopole and foundation appeared to be in good condition with no visually apparent signs of defects, damage or deterioration. Attached are some photographs of the monopole taken during our site visit for your reference.

Based on our review of the structural analysis report on the monopole and our review of existing conditions, we have concluded that the existing monopole and facility meet the requirements of the 2020 Building Code of New York State and that the existing structural integrity of the monopole has been maintained.

Should you have further questions, please do not hesitate to contact our office.

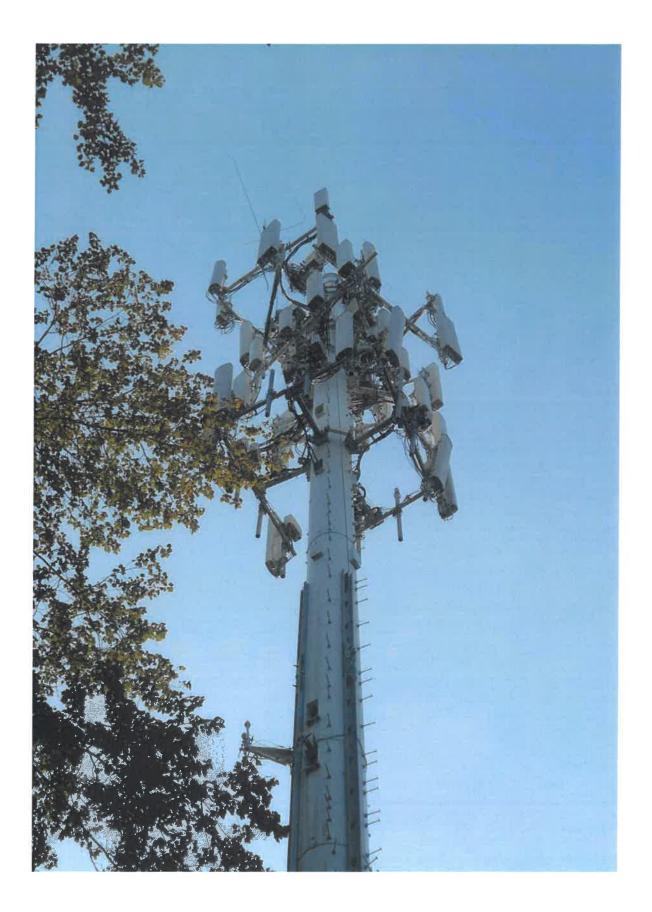
Sincerely,

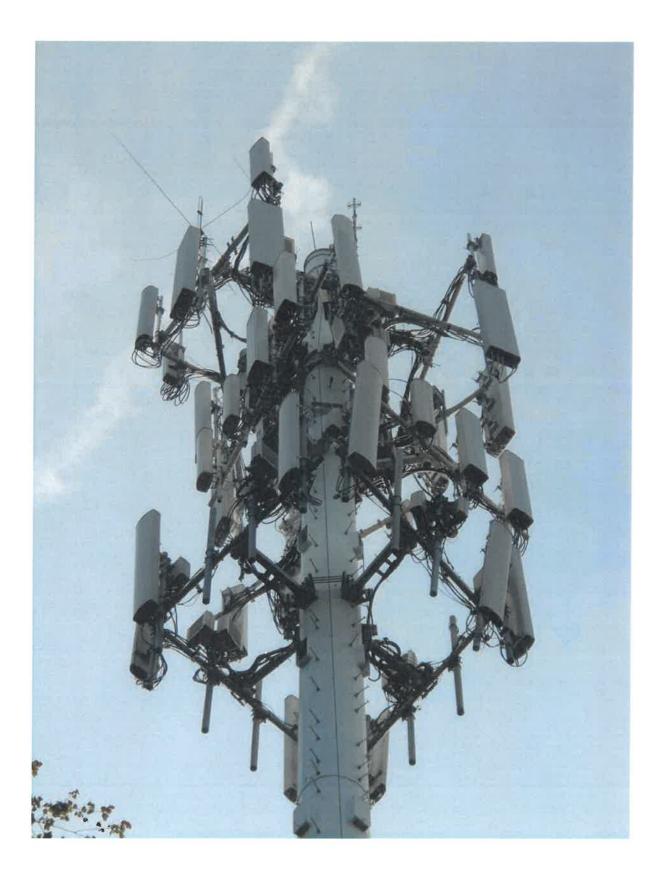
Structural Consulting Services, P.C.

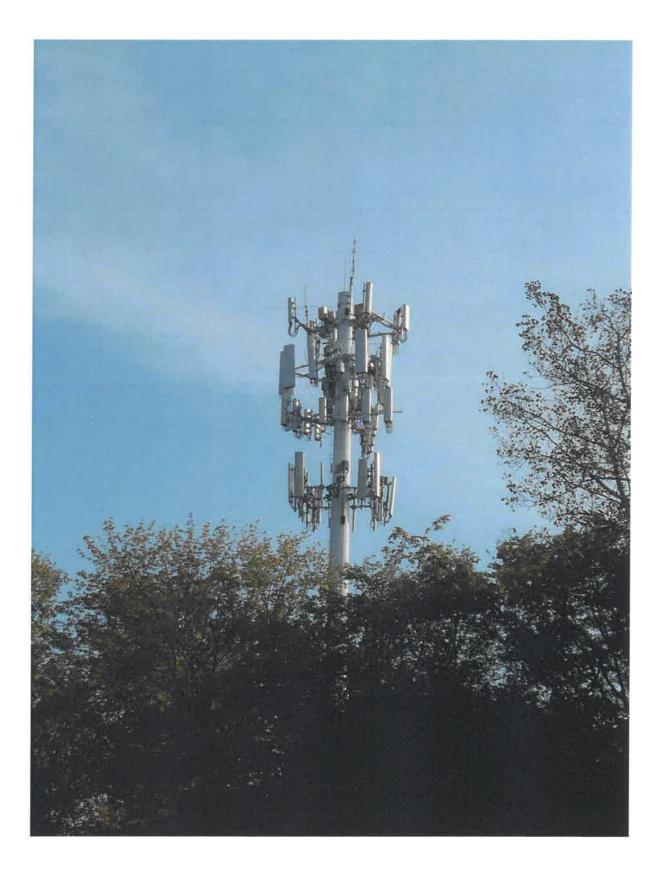
James H. Fahey, P.E., S.E. Principal

cc: Verizon Wireless Snyder & Snyder

JHF/kap


Attachments




67 Federal Road, Brookfield, CT 06804 Tel: 203.740.7578 Fax: 203.775.5670

Structural Analysis Report

Structure	: 150 Foot Monopole
Insite Site Name	: Vista
Insite Site Number	: NY001
Proposed Carrier	: Verizon Wireless
Carrier Site Name	: East Woods
Carrier Site Number	: 171228
Site Location	: 377 Smith Ridge Road
	South Salem, NY 10590 (Westchester County)
	41.2144, -73.5151
Date	: March 11, 2020
Max Member Stress Level	: 84.6% (Tower)
	92.0% (Reinforcement Bolts)
	64.2% (Foundation)
Result	: PASS

Prepared by: Bennett & Pless, Inc. B&P Job No.: 19313.018 Warning: It is a violation of the law of the State of New York for any person, unleas acting under the direction of a licensed professional engineer to alter an item in any way.

bennett&pless B **Experience Structural Expertise**

Atlanta | Boca Raton | Charlotte | Chattanooga 750 Park of Commerce Drive, Suite 200, Boca Raton, FL 33487 | T: 561 282 2676 F: 561 989 0277 www.bennett-pless.com

Table of Contents

٠

Introduction	
Existing Structural Information	
Final Proposed Equipment Loading for Verizon	
Design Criteria	
Analysis Results	2
Assumptions	2
Conclusions	2
Standard Conditions	
Disclaimer of Warranties	
Calculations	Attached
Collocation Application	Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the new loads proposed by Verizon. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	DaVinci Tower Drawings No. 10235-1037 dated April 8, 2010
Foundation Information	DaVinci Tower Drawings No. 10235-1037 dated April 8, 2010
Geotechnical Information	Terracon Geotechnical report Job No. J2105105 dated February 2, 2010
Existing Equipment Information	KMB Engineering Mapping report Job No. 350.0109 dated September 20, 2017 and SA report dated 350.0109.001 dated July 30, 2018.
Tower Reinforcement Information	Bennett and Pless Modification Drawings Job No. 15703.003 dated May 25, 2016.

Final Proposed Equipment Loading for Verizon

The following proposed loading was obtained from the NY001 Vista Verizon 2nd Amendment Exhibit 8.23.2019:

		An	tenna/Equipment			Coax
Mount	RAD	Qty.	Antenna	Туре	Qty.	Size/Type
	-	3	T-Arm (12.5')	Mount		
		6	Andrew JAHH-65BR3B	Panel		
		3*	Commscope SBNHH-1D65A*	Panel		1 5/8" * 1-5/8" 1-1/4" Hybrid
		3	Andrew DBXNH-6565A-A2M	Panel		
123.5	5 123.5	3	Nokia AirScale Dual RRH 4T4R B2/66a 320W, AHFIC	RRH	12* 6 3	
125.5		3	Nokia Alcatel B13 RRH 4X30	RRH		
		3	Nokia AirScale RRH 4T4R B5 160W AHCA	RRH		
		3*	Alcatel Lucent AWS RRH 2x60*	nt AWS RRH 2x60* RRH		
	3 Raycap RXX-DC-3315-PF-48 OVP 2* 1' Dish* Dish	OVP				
		1' Dish*	Dish	2*	Cat5*	
72.5	-2Stand-offMount73.53PCTEL GPS-TMG-HR-26NGPS		Stand-off			- /
73.5			3	7/8"		

Note: Proposed equipment shown in **bold** above.

*Note: Verizon Wireless reserved rights.

Note: Other existing loading can be found on the tower profile attached.

Design Criteria

The tower was analyzed using tnxTower (Version 8.0.5.0) tower analysis software using the following design criteria.

State Building Code	2015 IBC w/ New York State 2017
	Uniform Code Supplement
TLA/ELA Standard Code	Rev G
Basic Wind Speed	115 MPH (Vuit)/90 MPH (Vasd)
Basic Wind Speed w/ Ice	50 MPH w/ 0.75" Ice
Steel Grade	65 ksi pole and channel reinforcement
Exposure Category	С
Topographic Category (height)	1 (0.0 ft)
Risk Category	П

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads without modification. The existing foundation has also been evaluated. The tower base is found to be structurally capable of supporting the proposed equipment loads.

Assumptions

- 1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
- 2. Foundations are considered to have been properly designed for the original design loads.
- 3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
- 4. Antenna mount loads have been estimated based on generally accepted industry standards.
- 5. The mounts for the proposed antennas have been analyzed and designed by others.
- 6. See additional assumptions contained in the report attached.

Conclusions

The existing tower described above has sufficient capacity to support the proposed loading based on the governing Building Code. The foundation is also acceptable.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance please call us anytime at 605-540-4620.

Sincerely,

John Bozzetto, P.E. Principal

Standard Conditions

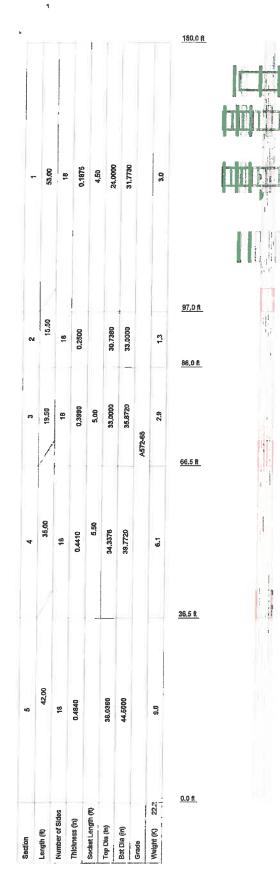
All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and it components, or relevant information.

- Information from drawings in possession of Bennett & Pless, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Bennett & Pless and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in a uncorroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.

All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with the revision of ANSI/TIA/EIA-222 requested.


All services are performed, results obtained and recommendations made in accordance with the generally accepted engineering principles and practices. Bennett & Pless is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

Bennett & Pless Inc. makes no warranties, expressed or implied, in connection with this report, and disclaims any liability arising from the ability of the existing structure to support the design loads for which it was originally designed. Bennett & Pless Inc. will not be responsible whatsoever for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Bennett & Pless pursuant to this report will be limited to the total fee received for preparation of this report.

Attachment 1: Calculations

1

Ο

ALL REACTIONS ARE FACTORED

AXIAL 79 K

÷,

TORQUE 2 kip-ft 50 mph WIND - 0.7500 in ICE

AXIAL 48 K

TORQUE 7 kip-ft REACTIONS - 90 mph WIND

MOMENT 1048 kip-ft

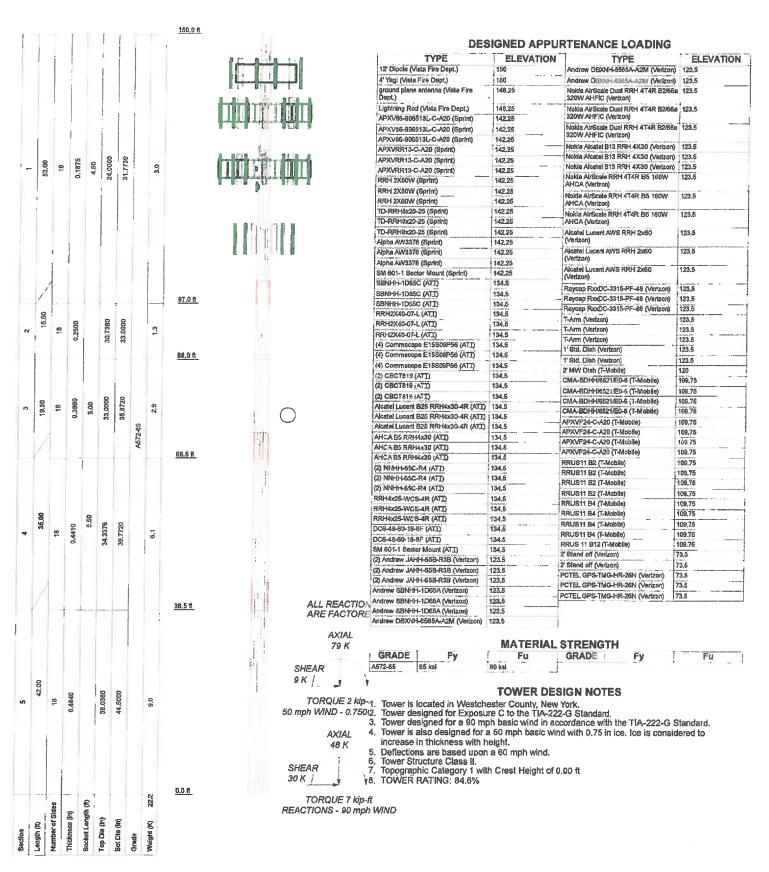
MOMENT

3340 kip-ft

SHEAR

9 K /

SHEAR


30 K |

		MATERIAL	STRENGT	1	
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-85	65 ksi	80 kuti	1.1.5	antenano verde	
		·			

TOWER DESIGN NOTES

- Tower Is located in Westchester County, New York.
 Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 90 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 84.6%

Ka	Bennett & Pless	^{on:} NY001 (Vista)	
bennett&pless B 76		Project: Monopole Structural Analyse Client: InSite Towers Drawn by: Chunhu	
Experience Structural Experties		Code: TIA-222-G Date: 03/11/20 Path:	Scale: NTS Dwg No. E-1

lh	Bennett & Pless	^{lob:} NY001 (Vista)
bennett&oless 🛛 7	50 Park of Commerce Dr #200	Project: Monopole Structural Analysis
	Boca Raton, FL 33487	Client: InSite Towers Drawn by: Chunhui Song App'd:
Experience Structural Experties	Phone: (605) 540-4623	Code: TIA-222-G Date: 03/11/20 Scale: NT
	FAX:	Path: Dwg No- E-

tnxTower	Job NY001 (Vista)	Page 1 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raion, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Westchester County, New York. Basic wind speed of 90 mph. Structure Class II. Exposure Category C. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Retension Guys To Initial Tension

Bypass Mast Stability Checks

Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Triangulate Diamond Inner Bracing

Sort Capacity Reports By Component

Treat Feed Line Bundles As Cylinder

Ignore KL/ry For 60 Deg, Angle Legs

Use Azimuth Dish Coefficients

	Consider Moments - Legs		Distribute Leg Loads As Uniform
	Consider Moments - Horizontals		Assume Legs Pinned
	Consider Moments - Diagonals	V	Assume Rigid Index Plate
	Use Moment Magnification	1	Use Clear Spans For Wind Area
1	Use Code Stress Ratios	1	Use Clear Spans For KL/r

- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- ✓ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- ✓ SR Members Have Cut Ends SR Members Are Concentric

V.	Use ASCE 10 X-Brace Ly Rules
1	Calculate Redundant Bracing Forces
	Ignore Redundant Members in FEA
	SR Lcg Bolts Resist Compression
	All Leg Panels Have Same Allowable

- Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry Section Elevation Section Splice Number Тор Bottom Wall Bend Pole Grade Diameter Diameter Thickness Radius Length Length of Sides in in in Ĥ Ít in tt LI 150.00-97.00 24.0000 53.00 4.50 18 31.7730 0.1875 0.7500 A572-65

tnxTower	Job NY001 (Vista)	Page 2 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Section Elevation		Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
ft	ft It ft Sid	Sides	in	in	in	in			
									(65 ksi)
L2	97.00-86.00	15.50	0.00	18	30.7380	33.0000	0.2500	1.0000	A572-65
									(65 ksi)
L3	86.00-66.50	19.50	5.00	18	33.0000	35.8720	0.3990	1.5960	A572-65
									(65 ksi)
L4	66.50-36.50	35.00	5.50	18	34.3376	39.7720	0.4410	1.7640	A572-65
									(65 ksi)
L5	36.50-0.00	42.00		18	38.0360	44.5000	0.4840	1.9360	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area		r	С	I/C	J	It/Q	W	, w/t	
Decitori	in	in ²	in		in	in ³	in ⁴	in^2	n in		
LI	24,3413	14,1714	1015.2	211 8.4534	12.1920	83,2694	2031.7780	7.0871	3.89		8
	32,2342	18.7973	2369.2		16.1407	146.7868	4741.5959	9.4004	5.26		
<u>L2</u>	31.8405	24.1923	2841.0		15.6149	181.9419	5685.7533	12.0984	4.96		
L3	33.4705	25.9871	3521.4		16.7640	210.0587	7047.4812	12.9960	5.36	-	
1-3	33.4475 36.3638	41.2868 44.9239	5543.8 7141.8		16,7640 18,2230	330.6986 391.9149	11094.9580 14293.1073	20.6473 22.4662	5.10 5.61		
L4	35.5876	47.4462	6887.3		17.4435	394.8367	13783.7257	23.7276	5.01		
2.	40.3175	55.0529	10759.3		20.2042	532.5333	21532.9513	27.5317	6.22		
L5	39.4077	57.6880	10277.5	519 13.3310	19.3223	531.9011	20568.6273	28.8495	5.84		
	45.1118	67.6181	16550.8	939 15.6257	22.6060	732.1461	33123.5658	33.8155	6.98	02 14.42	2
Tower	Guss	el (Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mu	lt. Double	Angle	Double Angle	Double Ang
Elevatio	n Are	a 11	hickness		Ar	Factor		Stitch		Stitch Bolt	Stitch Bolt
						1 4000		C 29 5 C 3	1 20 (11)		
	(per fa	ice)				Ar		Spa		Spacing	Spacing
		ice)						Spac Diag	cing onals	Spacing Horizontals	Redundants
ſ	(per fa	ice)	în					Spa	cing onals	Spacing	
Ll	<i>it</i> ²	ice)	in		1		1	Spac Diag	cing onals	Spacing Horizontals	Redundant
L1 50.00-97.	<i>jt²</i> 00	ice)	in		1		1	Spac Diag	cing onals	Spacing Horizontals	Redundant
L1 50.00-97. 97.00-86	<i>jt²</i> 00 5.00	ice)	in		1		1	Spac Diag	cing onals	Spacing Horizontals	Redundant
L1 50.00-97.	<u>jt</u> ² 00 5.00 5.50	ice)	in		1 1 1		1	Spac Diag	cing onals	Spacing Horizontals	Redundants

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weigh
		Torque Calculation		ft				in	in	plf

Switchblade Reinf	A	No	Surface Af	90.08 - 0.00	1	1	0.333	3,5000	14.0000	18.60
(<unassigned>)</unassigned>			(CaAa)				0.333			
Switchblade Reinf	B	No	Surface Af	90.08 - 0.00	1	1	0.333	3.5000	14.0000	18.60
(<unassigned>)</unassigned>			(CaAa)				0.333			
Switchblade Reinf	С	No	Surface Af	90.08 - 0.00	1	1	0.500	3.5000	14.0000	18.60
(<unassigned>)</unassigned>			(CaAa)				0.500			

<i>tnxTower</i>	
-----------------	--

Job

Client

Bennett & Pless 750 Park of Commerce Dr #200 Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:

Page 3 of 17 NY001 (Vista) Project Date Monopole Structural Analysis 16:02:51 03/11/20 Designed by InSite Towers Chunhul Song

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
LDF4RN-50A (1/2	C	No	No	Inside Pole	148.25 - 5.00	1	No Ice	0.00	0.15
FOAM)							1/2" Ice	0.00	0.15
(Unknown)							1" Ice	0.00	0.15
LDF5-50A (7/8"	С	No	No	Inside Pole	150.00 - 5.00	1	No Ice	0.00	0.33
FOAM)						-	1/2" Ice	0.00	0.33
(Vista Fire Dept.)							1" Ice	0.00	0.33
LDF4RN-50A (1/2	С	No	No	Inside Pole	150.00 - 5.00	1	No Ice	0.00	0.15
FOAM)	-					•	1/2" Ice	0.00	0.15
(Vista Fire Dept.)							1" Ice	0.00	0.15
(* 13w 110 Dopu) ***							1 100	0.00	0.15
LDF7-50A (1-5/8	С	No	No	Inside Pole	144.25 - 5.00	6	No Ice	0.00	0.82
FOAM)							1/2" Ice	0.00	0.82
(Sprint)							1" Ice	0.00	0.82
1 1/4" Hybriflex	С	No	No	Inside Pole	144.25 - 5.00	6	No Ice	0.00	0.66
(Sprint)							1/2" Ice	0.00	0.66
							1" Ice	0.00	0.66
*** LDF7-50A (1-5/8	с	No	No	Inside Pole	134.50 - 5.00	10	No Teo	0.00	0.00
	U	INO	INO	Inside Pole	134.30 - 3.00	18	No Ice	0.00	0.82
FOAM)							1/2" Ice	0.00	0.82
(AT&T)	~	37-	37.	7 1 5 1	104.00 0.00		1" Ice	0.00	0.82
2-1/4" Conduit	С	No	No	Inside Pole	134.50 - 5.00	1	No Ice	0.00	0.10
(AT&T)							1/2" Ice	0.00	0.10
							1" Ice	0.00	0.10
"Innerduct Conduit	С	No	No	Inside Pole	134.50 - 5.00	4	No Ice	0.00	0,34
AT&T-(4)fiber-(2)							1/2" Ice	0.00	0.34
DC) ***							I" Ice	0.00	0,34
LDF7-50A (1-5/8	С	No	No	Inside Pole	123.50 - 5.00	12	No Ice	0.00	0.82
FOAM)							1/2" Ice	0.00	0.82
(Verizon)							1" Ice	0.00	0.82
LDF7-50A (1-5/8	С	No	No	Inside Pole	123.50 - 5.00	6	No Ice	0.00	0.82
FOAM)	-					Ū.	1/2" Ice	0.00	0.82
(Verizon)							1" Ice	0.00	0.82
1 1/4" Hybriflex	С	No	No	Inside Pole	123.50 - 5.00	3	No Ice	0.00	0.66
(Verizon)	-						1/2" Ice	0.00	0.66
(1" Ice	0.00	0.66
CAT-5	С	No	No	Inside Pole	120.00 - 5.00	2	No Ice	0.00	0.55
(Verizon)	-					-	1/2" Ice	0.00	0.55
(, , , , , , , , , , , , , , , , , , ,							1" Ice	0.00	0.55
LDF5-50A (7/8	С	No	No	Inside Pole	73.50 - 5.00	2	No Ice	0.00	0.33
FOAM)	U		110	ANTIGUE I UIV	10100 - 2100	-	1/2" Ice	0.00	0.33
(Verizon)							1/2" Ice	0.00	0.33
(VCI12011) ***							1 162	0.00	0.33
1 3/8" O.D	Α	No	No	Inside Pole	112.00 - 5.00	3	No Ice	0.00	1.00
(T-Mobile)							1/2" Icc	0.00	1.00
							1" Ice	0.00	1.00
1 1/4" Hybriflex	Α	No	No	Inside Pole	112.00 - 5.00	1	No Ice	0.00	0.66
(T-Mobile)							1/2" Ice	0.00	0.66
							1" Ice	0.00	0.66

tmxTower

Project

Client

Job

Bennett & Pless 750 Park of Commerce Dr #200 Boca Raton, FL 33487 Phone: (605) 540-4623 FAX: NY001 (Vista) Monopole Structural Analysis InSite Towers 4 of 17 Date 16:02:51 03/11/20 Designed by Chunhui Song

Page

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight	
	ft		/t ²	/t ²	/t ²	/t ²	K	
L1 150.0	150.00-97.00	Α	0.000	0.000	0.000	0.000	0.05	
		В	0.000	0.000	0.000	0.000	0.00	
		С	0.000	0.000	0.000	0.000	1.53	
L2 97.00-86.00	97.00-86.00	Α	0.000	0.000	2.380	0.000	0.12	
		B	0.000	0.000	2.380	0.000	0,08	
		С	0.000	0.000	2.380	0.000	0.56	
L3	86.00-66.50	Α	0.000	0.000	11.375	0.000	0.43	
		В	0.000	0.000	11.375	0.000	0.36	
		С	0.000	0.000	11.375	0.000	1.22	
L4	66.50-36.50	Α	0.000	0.000	17.500	0.000	0.67	
		в	0.000	0.000	17.500	0.000	0.56	
		С	0.000	0.000	17.500	0.000	1.88	
L5	36.50-0.00	A	0.000	0.000	21.292	0.000	0.79	
		В	0.000	0.000	21,292	0.000	0.68	
		С	0.000	0.000	21.292	0.000	2.07	

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A _R	AF	CAAA In Face	CAAA Out Face	Weight
	11	Leg	in	122	112	/2 ²	lt ²	K
Ll	150.00-97.00	A	1.710	0.000	0.000	0.000	0.000	0.05
	в		0.000	0.000	0.000	0.000	0.00	
		С		0.000	0.000	0.000	0.000	1.53
L2	97.00-86.00	A	1.661	0.000	0.000	3.776	0.000	0.17
		B		0.000	0.000	3.776	0.000	0.13
		С		0.000	0.000	3.776	0.000	0.61
L3	86.00-66.50	Α	1.631	0.000	0.000	17.735	0.000	0.68
		в		0.000	0.000	17.735	0.000	0.61
		С		0.000	0.000	17.735	0.000	1.47
L4	66.50-36.50	Α	1.567	0.000	0.000	27.284	0.000	1.05
		в		0.000	0.000	27.284	0.000	0.94
		С		0.000	0.000	27.284	0.000	2.27
L5	36.50-0.00	A	1.415	0.000	0.000	32.733	0.000	1.24
		В		0.000	0.000	32.733	0.000	1.12
		С		0.000	0.000	32.733	0.000	2.52

Feed Line Center of Pressure									
Section	Elevation	CP _X	CPz	CP _X Ice	CP _Z Ice				
	ft	in	in	in	in				
LI	150.00-97.00	0.0000	0.0000	0.0000	0.0000				
L2	97.00-86.00	-0.3471	-1.0729	-0.2871	-0.8875				
L3	86.00-66.50	-0.6476	-2.0080	-0.5647	-1.7510				
L4	66.50-36.50	-0.6721	-2.0939	-0.5822	-1.8138				
L5	36.50-0.00	-0.6987	-2.1891	-0.6001	-1.8802				

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

tnxTower	Job NY001 (Vista)	Page 5 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
LI	21	Switchblade Reinf	97.00 - 90.08	1.0000	1.0000
L1	22	Switchblade Reinf	97.00 - 90.08	1.0000	1.0000
LI	23	Switchblade Reinf	97.00 - 90.08	1.0000	1.0000
L3	21	Switchblade Reinf	66.50 - 86.00	1.0000	1.0000
L3	22	Switchblade Reinf	66.50 - 86.00	1.0000	1.0000
L3	23	Switchblade Reinf	66.50 - 86.00	1.0000	1.0000
L4	21	Switchblade Reinf	36.50 - 66.50	1.0000	1.0000
L4	22	Switchblade Reinf	36.50 - 66.50	1.0000	1.0000
L4	23	Switchblade Reinf	36.50 - 66.50	1.0000	1.0000

•

			Di	screte 1	ower L	.oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		CAAA Front	C _A A _A Side	Weight
			ft ft jt	0	ft		ft ^z	ft²	K
ground plane antenna	C	None	a;	0.0000	148.25	No Ice	0.89	0.89	0.02
(Vista Fire Dept.)						1/2" Ice	1.14	1.14	0.02
						1" Ice	1.39	1.39	0.03
Lightning Rod	С	None		0.0000	148.25	No Ice	1.00	1.00	0.07
(Vista Fire Dept.)						1/2" Ice	0.00	0.00	0.10
						I" Ice	0.00	0.00	0.12

12' Dipole	С	None		0.0000	150.00	No Ice	2.80	2.80	0.03
(Vista Fire Dept.)						1/2" Ice	4.22	4.22	0.05
						1" Ice	5.67	5.67	0.08
4' Yagi	В	None		0.0000	150.00	No Ice	2.00	2.00	0.05
(Vista Fire Dept.)						1/2" Ice	3.50	3.50	0.07
***						1" Ice	5.00	5.00	0.08
XV86-906513L-C-A20	Α	From Leg	4.00	0.0000	142.25	No Ice	6.67	2.82	0.03
(Sprint)			0.00			1/2" Ice	7.10	3.15	0.07
			0.00			1 ^ª Ice	7.54	3.50	0.11
XV86-906513L-C-A20	В	From Leg	4.00	0.0000	142.25	No Ice	6.67	2.82	0.03
(Sprint)			0.00			1/2" Ice	7.10	3.15	0.07
			0.00			1" Ice	7,54	3.50	0.11
XV86-906513L-C-A20	С	From Leg	4.00	0.0000	142.25	No Ice	6.67	2.82	0.03
(Sprint)			0.00			1/2" Ice	7.10	3.15	0.07
			0.00			1" Ice	7.54	3.50	0.11
APXVRR13-C-A20	Α	From Leg	4.00	0.0000	142.25	No Ice	7.35	2.60	0.03
(Sprint)		5	0.00		-	1/2" Ice	7.80	2.94	0.07
			0.00			1" Ice	8.26	3.29	0.11
APXVRR13-C-A20	Α	From Leg	4.00	0.0000	142.25	No Ice	7.35	2.60	0.03
(Sprint)			0.00			1/2" Ice	7.80	2.94	0.07

trans Torse are	dot	Page
tnxTower	NY001 (Vista)	6 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	¢	fi		ft²		K
			0.00			1" Ice	8.26	3.29	0.11
APXVRR13-C-A20 (Sprint)	В	From Leg	4.00 0.00	0.0000	142.25	No Ice I/2" Ice	7.35 7.80	2.60 2.94	0.03 0.07
(0.00			1" Ice	8.26	3.29	0.11
RRH 2X50W	С	From Leg	4.00	0.0000	142.25	No Ice	2.43	2.02	0.06
(Sprint)			0.00			1/2" Ice	2.65	2.22	0.08
RRH 2X50W	в	Erom Loo	0.00 4.00	0.0000	142.95	1" Ice	2.87	2.43	0.11
(Sprint)	в	From Leg	4.00	0.0000	142.25	No Ice 1/2" Ice	2.43 2.65	2.02 2.22	0.0 6 0.08
(obum)			0.00			1" Ice	2.87	2.43	0.03
RRH 2X50W	С	From Leg	4,00	0.0000	142.25	No Ice	2.43	2.02	0.06
(Sprint)			0.00			1/2" Ice	2.65	2.22	0.08
TO DDUD.00 45		F	0.00			1" Ice	2.87	2.43	0.11
TD-RRH8x20-25 (Sprint)	Α	From Leg	4.00 0.00	0.0000	142.25	No Ice	4.72	1.70	0.07
(aprinc)			0.00			1/2" Ice 1" Ice	5.01 5.32	1.92 2.15	0.10 0.13
TD-RRH8x20-25	в	From Leg	4.00	0.0000	142.25	No Ice	4.72	1.70	0.07
(Sprint)		•	0.00			1/2" Ice	5.01	1.92	0.10
			0.00			1" Ice	5.32	2.15	0.13
TD-RRH8x20-25	С	From Leg	4.00	0.0000	142.25	No Ice	4.72	1.70	0.07
(Sprint)			0.00 0.00			1/2" Ice 1" Ice	5.01	1.92 2.15	0.10
Alpha AW3378	А	From Leg	4.00	0.0000	142.25	No Ice	5.32 4.57	2.15	0.13 0.02
(Sprint)		110111 2005	0.00	0.0000	1 74,40	1/2" Ice	4.87	2.03	0.02
			0.00			1" Ice	5.18	2.30	0.08
Alpha AW3378	В	From Leg	4.00	0.0000	142.25	No Ice	4.57	1.76	0.02
(Sprint)			0.00			1/2" Ice	4.87	2.03	0.05
Alpha AW3378	с	Entern I an	0.00	0.0000	140.05	1" Ice	5.18	2.30	0.08
(Sprint)	C	From Leg	4.00 0.00	0.0000	142.25	No Ice 1/2" Ice	4.57 4.87	1.76 2.03	0.02 0.05
(opran)			0.00			1" Ice	5.18	2.30	0.08
SM 601-1 Sector Mount	С	None		0.0000	142.25	No Ice	30.27	30.27	0.47
(Sprint)						1/2" Ice	41.42	41.62	0.66
***						1" Ice	52.57	52.97	0.85
SBNHH-1D65C	А	From Leg	4.00	0.0000	134.50	No Ice	11.35	7.66	0.07
(AT&T)	~	110m Deg	0.00	0.0000	134.50	1/2" Ice	11.97	8.25	0.07
,,			0.00			1" Ice	12.59	8.84	0.20
SBNHH-1D65C	В	From Leg	4.00	0.0000	134.50	No Ice	11.35	7.66	0.07
(AT&T)			0.00			1/2" Ice	11.97	8.25	0.13
SBNHH-1D65C	с	Ernen I. on	0.00	0.0000	124.60	1" Ice	12.59	8.84	0.20
(AT&T)	C	From Leg	4.00 0.00	0.0000	134.50	No Ice 1/2" Ice	11.35 11.97	7.66 8.25	0.07 0.13
(///00//)			0.00			1" Ice	12.59	8.84	0.13
RRH2X40-07-L	Α	From Leg	4.00	0.0000	134.50	No Ice	2.12	1.77	0.06
(AT&T)		-	0.00			1/2" Ice	2.32	1.97	0.08
BB1141116	-	-	0.00			1" Ice	2.54	2.17	0.10
RRH2X40-07-L	в	From Leg	4.00	0.0000	134.50	No Ice	2.12	1.77	0.06
(AT&T)			0.00			1/2" Ice	2.32	1.97	0.08
RRH2X40-07-L	С	From Leg	0.00 4.00	0.0000	134,50	1" Ice No Ice	2.54 2.12	2.17 1.77	0.10 0.06
(AT&T)	-	- tom DeB	0.00	0.0000	10.1400	1/2" Ice	2.32	1.97	0.08
· · · /			0.00			1" Ice	2.54	2.17	0.10
Commscope E15S09P56	Α	From Leg	4.00	0.0000	134.50	No Ice	0.75	0.23	0.01
(AT&T)			0.00			1/2" Ice	0.86	0.31	0.01
Commence Piccooper	в	Energy I	0.00	0.0000	104 60	1ª Ice	0.97	0.39	0.02
Commscope E15S09P56	в	From Leg	4.00	0.0000	134.50	No Ice	0.75	0.23	0.01

And Torney	Job	Page
tnxTower	NY001 (Vista)	7 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh.
			ft ft jt	o	ft		ft²	ft²	K
(AT&T)			0.00			1/2" Ice 1" Ice	0.86 0.97	0.31 0.39	0.01
(4) Commscope E15S09P56 (AT&T)	С	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	0.75 0.86 0.97	0.23 0.31 0.39	0.01 0.01 0.02
(2) CBCT819 (AT&T)	A	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	0.14 0.22 0.31	0.08 0.13 0.19	0.01 0.01
(2) CBCT819 (AT&T)	В	From Leg	4.00 0.00 0.00	0.0000.0	134.50	No Ice 1/2" Ice 1" Ice	0.14 0.22 0.31	0.08 0.13 0.19	0.01 0.01 0.01
(2) CBCT819 (AT&T)	С	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice	0.14 0.22	0.08 0.13	0.01 0.01 0.01
Alcatel Lucent B25 RRH4x30-4R (AT&T)	A	From Leg	4.00 0.00	0.0000	134.50	1" Ice No Ice 1/2" Ice	0.31 2.12 2.31	0.19 1.54 1.71	0.01 0.05 0.07
Alcatel Lucent B25 RRH4x30-4R (AT&T)	В	From Leg	0.00 4.00 0.00	0.0000	134.50	1" Ice No Ice 1/2" Ice	2.50 2.12 2.31	1.88 1.54 1.71	0.09 0.05 0.07
Alcatel Lucent B25 RRH4x30-4R	С	From Leg	0.00 4.00 0.00	0.0000	134.50	1" Ice No Ice 1/2" Ice	2.50 2.12 2.31	1.88 1.54 1.71	0.09 0.05 0.07
(AT&T) AHCA B5 RRH4x30 (AT&T)	A	From Leg	0.00 4.00 0.00	0.0000	134.50	1" Ice No Ice 1/2" Ice	2.50 1.28 1.43	1.88 0.72 0.83	0.09 0.04 0.05
AHCA B5 RRH4x30 (AT&T)	В	From Leg	0.00 4.00 0.00 0.00	0.0000	134.50	1" Ice No Ice 1/2" Ice 1" Ice	1.58 1.28 1.43 1.58	0.95 0.72 0.83	0.06 0.04 0.05
AHCA B5 RRH4x30 (AT&T)	с	From Leg	4.00 0.00 0.00	0.0000	134.50	No lce 1/2" Ice 1" Ice	1.38 1.28 1.43 1.58	0.95 0.72 0.83 0.95	0.06 0.04 0.05
(2) NNHH-65C-R4 (AT&T)	A	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	17.07 17.70 18.33	8.20 8.79 9.40	0.06 0.10 0.19 0.30
(2) NNHH-65C-R4 (AT&T)	в	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	17.07 17.70 18.33	8.20 8.79 9.40	0.30 0.10 0.19 0.30
(2) NNHH-65C-R4 (AT&T)	С	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	17.07 17.70 18.33	8.20 8.79 9.40	0.10 0.19
RRH4x25-WCS-4R (AT&T)	A	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	2.90 3.13 3.37	2.03 2.24 2.45	0.30 0.07 0.09
RRH4x25-WCS-4R (AT&T)	В	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	2.90 3.13 3.37	2.43 2.03 2.24 2.45	0.12 0.07 0.09 0.12
RRH4x25-WCS-4R (AT&T)	С	From Leg	4.00 0.00 0.00	0.0000	134.50	No Ice 1/2" Ice 1" Ice	2.90 3.13 3.37	2.03 2.24 2.45	0.12 0.07 0.09 0.12
DC6-48-60-18-8F (AT&T)	С	None		0.0000	134.50	No Ice 1/2" Ice 1" Ice	2.22 2.44 2.66	2.22 2.44 2.66	0.04 0.06 0.08
DC6-48-60-18-8F (AT&T)	A	None		0.0000	134.50	No Ice 1/2" Ice 1" Ice	2.22 2.44 2.66	2.22 2.44 2.66	0.04 0.06 0.08
SM 601-1 Sector Mount	С	None		0.0000	134.50	No Ice	30.27	30.27	0.47

Area Tomas	Job	Page
tnxTower	NY001 (Vista)	8 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

.

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft jt	σ.	ft		ft²	ft²	K
(AT&T)						1/2" Ice 1" Ice	41.42 52.57	41.62	0.66
***						1 100	32.37	52.97	0.85
Andrew JAHH-65B-R3B	Α	From Leg	4.00	0.0000	123.50	No Ice	9.11	5.98	0.06
(Verizon)		0	0.00			1/2" Ice	9.58	6.44	0.12
			0.00			1" Ice	10.05	6.91	0.19
Andrew JAHH-65B-R3B	в	From Leg	4.00	0.0000	123.50	No Ice	9.11	5.98	0.06
(Verizon)			0.00			1/2" Ice	9.58	6.44	0.12
			0.00			1" Ice	10.05	6.91	0.19
Andrew JAHH-65B-R3B	С	From Leg	4.00	0.0000	123.50	No Ice	9.11	5.98	0.06
(Verizon)			0.00			1/2" Ice	9.58	6.44	0.12
			0.00			1" Ice	10.05	6.91	0.19
ndrew SBNHH-1D65A	A	From Leg	4.00	0.0000	123.50	No Ice	5.96	3.91	0.03
(Verizon)			0.00			1/2" Ice	6.32	4.27	0.07
ndam CDNEEL IDGG	P	Denser T	0.00	0.0000	102 50	1" Ice	6.70	4.63	0.12
ndrew SBNHH-1D65A	В	From Leg	4.00	0.0000	123.50	No Ice	5.96	3.91	0.03
(Verizon)			0.00 0.00			1/2" Ice 1" Ice	6.32	4.27	0.07
ndrew SBNHH-1D65A	С	From Leg	4.00	0.0000	123.50	No Ice	6.70 5.96	4.63	0.12
(Verizon)	C.	From Deg	0.00	0.0000	123.30	1/2" Ice	6.32	3.91 4.27	0.03
(* 6112041)			0.00			1" Ice	6.70	4.63	0.07
Andrew	А	From Leg	4.00	0.0000	123.50	No Ice	5.38	3.53	0.12 0.03
DBXNH-6565A-A2M		110H Deg	0.00	0.0000	120.00	1/2" Ice	5.72	3.85	0.03
(Verizon)			0.00			1" Ice	6.07	4.17	0.11
Andrew	в	From Leg	4.00	0.0000	123,50	No Ice	5,38	3.53	0.03
BXNH-6565A-A2M			0.00			1/2" Ice	5.72	3.85	0.07
(Verizon)			0.00			1" Ice	6.07	4.17	0.11
Andrew	С	From Leg	4.00	0.0000	123.50	No Ice	5.38	3.53	0.03
BXNH-6565A-A2M			0.00			1/2" Ice	5.72	3.85	0.07
(Verizon)			0.00			l" lce	6.07	4.17	0.11
kia AirScale Dual RRH	А	From Leg	4.00	0.0000	123.50	No Ice	2.23	1.12	0.07
R B2/66a 320W AHFIC			0.00			1/2" Ice	2.42	1.28	0.08
(Verizon)			0.00			1" Ice	2.62	1.44	0.10
kia AirScale Dual RRH	B	From Leg	4.00	0.0000	123.50	No Ice	2.23	1.12	0.07
R B2/66a 320W AHFIC			0.00			1/2" Ice	2.42	1.28	0.08
(Verizon)	0	Error Las	0.00	0.0000	102.60	1" Ice	2.62	1.44	0.10
kia AirScale Dual RRH R B2/66a 320W AHFIC	С	From Leg	4.00 0.00	0.0000	123.50	No Icc 1/2" Ice	2,23	1.12	0.07
(Verizon)			0.00			1/2" Ice	2.42 2.62	1.28 1.44	0.08 0.10
kia Alcatel B13 RRH	Α	From Leg	4.00	0.0000	123.50	No Ice	2.02	1.62	0.16
4X30			0.00	010000	1 = 0 10 V	1/2" Ice	2.35	1.79	0.08
(Verizon)			0.00			1" Ice	2.55	1.97	0.10
kia Alcatel B13 RRH	в	From Leg	4.00	0.0000	123.50	No Ice	2.16	1.62	0.06
4X30		U	0.00			1/2" Ice	2.35	1.79	0.08
(Verizon)			0.00			1" Ice	2.55	1.97	0.10
kia Alcatel B13 RRH	С	From Leg	4.00	0.0000	123.50	No Ice	2.16	1.62	0.06
4X30		-	0.00			1/2" Ice	2.35	1.79	0.08
(Verizon)			0.00			1" Ice	2.55	1.97	0.10
ia AirScale RRH 4T4R	Α	From Leg	4.00	0.0000	123.50	No Ice	1.29	0.72	0.04
B5 160W AHCA			0.00			1/2" Ice	1.43	0.83	0.05
(Verizon)	_		0.00			1" Ice	1.58	0.96	0.06
ia AirScale RRH 4T4R	в	From Leg	4.00	0.0000	123.50	No Ice	1.29	0.72	0.04
B5 160W AHCA			0.00			1/2" Ice	1.43	0.83	0.05
(Verizon)	~	T I	0.00	0.0000	100 00	1" Ice	1.58	0.96	0.06
a AirScale RRH 4T4R	С	From Leg	4.00	0.0000	123.50	No Ice	1.29	0.72	0.04
B5 160W AHCA			0.00			1/2" Ice	1.43	0.83	0.05
(Verizon)			0.00			1" Ice	1.58	0.96	0.06

tnxTower	Job	Page
<i>inx i ower</i>	NY001 (Vista)	9 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Baca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weigh
			Vert						
			ft ft	e	ft		ft²	ft²	K
Alcatel Lucent AWS RRH	Α	From Leg	<u>/t</u> 4.00	0.0000	123.50	No Ice	3.35	1.99	0.06
2x60		Ģ	0.00		120100	1/2" Ice	3.60	2.22	0.08
(Verizon)			0.00			1" Ice	3.87	2.46	0.10
Alcatel Lucent AWS RRH	В	From Leg	4.00	0.0000	123,50	No Ice	3.35	1.99	0.06
2x60			0.00			1/2" Ice	3.60	2.22	0.08
(Verizon)			0.00			1" Ice	3.87	2.46	0.10
Alcatel Lucent AWS RRH	С	From Leg	4.00	0.0000	123.50	No Ice	3.35	1.99	0.06
2x60			0.00			1/2" Ice	3.60	2.22	0.08
(Verizon)			0.00			1" Ice	3.87	2.46	0.10
Raycap RxxDC-3315-PF-48	A	From Leg	4.00	0.0000	123.50	No Ice	4.10	2.19	0.03
(Verizon)			0.00			1/2" Ice	4.35	2.39	0.06
Autom BumDC 2215 DE 48	в	Eners I an	0.00	0.0000	102.60	1" Ice	4.61	2.61	0.10
Raycap RxxDC-3315-PF-48 (Verizon)	В	From Leg	4.00	0.0000	123.50	No Ice	4.10	2.19	0.03
(venzoit)			0.00			1/2" lce	4.35	2.39	0.06
Raycap RxxDC-3315-PF-48	С	From Leg	0.00 4.00	0.0000	123.50	1" Icc No Icc	4.61 4.10	2.61	0.10
(Verizon)	C	From Leg	0.00	0.0000	125.50	1/2" Ice	4.10	2.19 2.39	0.03
(verifoli)			0.00			172 ICe	4.55	2.59	0.06 0.10
T-Arm	А	None	0.00	0.0000	123.50	No Ice	10.54	10.54	0.34
(Verizon)	-	110110		0.0000	120.00	1/2" Ice	0.00	0.00	0.44
(· · · · · · · · · · · · · · · · · · ·						1" Ice	0.00	0.00	0.54
T-Arm	В	None		0.0000	123.50	No Ice	10.54	10.54	0.34
(Verizon)		1.0110		0.0000	120.00	1/2" Ice	0.00	0.00	0.44
(),						1" Ice	0.00	0.00	0.54
T-Arm	С	None		0.0000	123.50	No Ice	10,54	10.54	0.34
(Verizon)						1/2" Ice	0.00	0.00	0.44
						1" Ice	0.00	0.00	0.54
CTEL GPS-TMG-HR-26N	Α	From Leg	0.50	0.0000	73.50	No Ice	0.70	0.70	0.02
(Verizon)		-	0.00			1/2" Ice	0.80	0.80	0.02
			0.00			1º Ice	0.90	0.90	0.02
CTEL GPS-TMG-HR-26N	в	From Leg	0.50	0.0000	73.50	No Ice	0.70	0.70	0.02
(Verizon)			0.00			1/2" Ice	0.80	0.80	0.02
			0.00			1" Ice	0.90	0.90	0.02
CTEL GPS-TMG-HR-26N	А	From Leg	0.50	0.0000	73.50	No Ice	0.70	0.70	0.02
(Verizon)			0.00			1/2" Ice	0.80	0.80	0.02
		-	0.00			1" Ice	0.90	0.90	0.02
2' Stand off	A	From Leg	0.00	0.0000	73.50	No Ice	2.96	2.11	0.01
(Verizon)			0.00			1/2" Ice	4.10	2.93	0.02
21.01.1.20	~		0.00			1" Ice	5.24	3.75	0.02
2' Stand off	С	From Leg	0.00	0.0000	73.50	No Ice	2.96	2.11	0.01
(Verizon)			0.00			1/2" Ice	4.10	2.93	0.02
***			0.00			1" Ice	5.24	3.75	0.02
CMA-BDHH/6521/E0-6	A	From Leg	4.00	-30.0000	109.75	No Ice	11.59	1.04	0.07
(T-Mobile)	A	130m Leg	2.00	-30.0000	109.75	1/2" Ice	12.22	4.94 5.43	0.07
(1-MIODIIC)			0.00			1" Ice	12.85		0.13
CMA-BDHH/6521/E0-6	Α	From Leg	4.00	60,0000	109.75	No Ice	11.59	5.94 4.94	0,20 0.07
(T-Mobile)	11	110011005	2.00	00.0000	147.15	1/2" Ice	12.22	5.43	0.13
(111100110)			0.00			I" Ice	12.85	5.94	0.20
CMA-BDHH/6521/E0-6	в	From Leg	4.00	30.0000	109.75	No Ice	11.59	4.94	0.20
(T-Mobile)	***		2.00	30.0000	107.14	1/2" Ice	12.22	5.43	0.13
(*/			0.00			1" Ice	12.85	5.94	0.20
CMA-BDHH/6521/E0-6	С	From Leg	4.00	0.0000	109.75	No Ice	11.59	4.94	0.20
(T-Mobile)	-		2.00	010000		1/2" Ice	12.22	5.43	0.13
· · · · · · · · · · · · · · · · · · ·			0.00			1" Ice	12.85	5.94	0.20
APXVF24-C-A20	А	From Leg	4.00	-30.0000	109.75	No Ice	13.11	7.20	0.05
						1/2" Ice	13.81	1 10 0	0100

Arene Ton to an	Job	Page
<i>tnxTower</i>	NY001 (Vista)	10 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft ft	o	ft		ft²	ft²	K
			0.00		An	1" Ice	14.52	8.35	0.20
APXVF24-C-A20	Α	From Leg	4.00	60.0000	109.75	No Ice	13.11	7.20	0.05
(T-Mobile)			-2.00			1/2" Ice	13.81	7.77	0.12
			0.00			1" Ice	14.52	8.35	0.20
APXVF24-C-A20	В	From Leg	4.00	30.0000	109.75	No Ice	13.11	7.20	0.05
(T-Mobile)		-	-2.00			1/2" Ice	13.81	7.77	0.12
			0.00			1" Ice	14,52	8.35	0.20
APXVF24-C-A20	С	From Leg	4.00	0.0000	109.75	No Ice	13.11	7.20	0.05
(T-Mobile)		-	-2.00			1/2" Ice	13.81	7.77	0.12
			0.00			1" Ice	14.52	8.35	0.20
RRUS11 B2	Α	From Leg	4.00	-30.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)		_	0.00			1/2" Ice	3.50	1.52	0.08
			0.00			1" Ice	3.75	1.70	0.10
RRUSI1 B2	Α	From Leg	4.00	60.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)		-	0.00			1/2" lce	3.50	1.52	0.08
			0.00			1" Ice	3.75	1.70	0.10
RRUS11 B2	В	From Leg	4.00	30.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)		-	0.00			1/2" Ice	3.50	1.52	0.08
			0.00			1" Ice	3,75	1.70	0.10
RRUS11 B2	С	From Leg	4.00	0.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)		0	0.00			1/2" Ice	3.50	1.52	0.08
. ,			0.00			1" Ice	3.75	1.70	0.10
RRUS11 B4	Α	From Leg	4.00	-30.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)			0.00			1/2" Ice	3.50	1.52	0.08
			0.00			I" Ice	3.75	1.70	0.10
RRUS11 B4	Α	From Leg	4.00	60.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)		U	0.00			1/2" Ice	3.50	1.52	0.08
. ,			0.00			1" Ice	3.75	1.70	0.10
RRUS11 B4	В	From Leg	4.00	30.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)			0.00			1/2" Ice	3.50	1.52	0.08
			0.00			1" Ice	3.75	1.70	0.10
RRUS11 B4	С	From Leg	4.00	0.0000	109.75	No Ice	3.26	1.34	0.06
(T-Mobile)	-		0.00			1/2" Ice	3.50	1.52	0.08
,			0.00			1" Ice	3.75	1.70	0.10
RRUS 11 B12	Α	From Leg	4.00	-30.0000	109.75	No Ice	2.83	1.18	0.05
(T-Mobile)			0.00			1/2" Ice	3.04	1.33	0.07
			0.00			1" Ice	3.26	1.48	0.10

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
***	-			jt	Þ	0	li	<u>ji</u>		112	K
' MW Dish T-Mobile)	С	Paraboloid w/o Radome	From Leg	0.00 0.00 0.00	0.0000		120.00	2.00	No Ice 1/2" Ice 1" Ice	3.14 3.41 3.68	0.03 0.05 0.07
Std. Dish Verizon)	А	Paraboloid w/o Radome	From Leg	0.50 0.00	0.0000		123.50	1.00	No Ice 1/2" Ice	0.79 0.92	0.01 0.01

dama Terrara	Job	Page
tnxTower	NY001 (Vista)	11 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Cllent InSite Towers	Designed by Chunhui Song

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				jt	۰	۰	ft	Ĥ.		lt^2	K
'Std. Dish	с	Paraboloid w/o	From	0.00	0.0000		123.50	1.00	1" Ice No Ice	1.06	0.02
(Verizon)	-	Radome	Leg	0.00					1/2" Ice 1" Ice	0.92	0.01

Load Combinations

Comb.	Description
No.	Deed Out-
1 2	Dead Only
2 3	1.2 Dead+1.6 Wind 0 deg - No Ice
	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6 7	1.2 Dead+1.6 Wind 60 deg - No Ice
	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Icc+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38 39	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service

trans Tormore	Job	Page
<i>tnxTower</i>	NY001 (Vista)	12 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540–4623 FAX;	Client InSite Towers	Designed by Chunhui Song

Comb.	Description	
No.	· · · · · · · · · · · · · · · · · · ·	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

			Maxin	num Reactio	ons
Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	27	78.54	-0.05	9.13
	Max. H _x	20	48.18	29.31	0.07
	Max. H _z	2	48.18	-0.15	29.68
	Max. M _x	2	3339.78	-0.15	29.68
	Max. M _z	8	3297.70	-29.39	0.06
	Max. Torsion	9	7.17	-29.39	0.06
	Min. Vert	23	36.14	25.41	14.83
	Min, H _x	8	48.18	-29.39	0.06
	Min. H _z	14	48.18	-0.05	-29.62
	Min. M _x	14	-3329.50	-0.05	-29.62
	Min. Mz	20	-3289.74	29.31	0.07
	Min. Torsion	21	-7.03	29.31	0.07

Tower Mast Reaction Summary

Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M,	Torque	
	K	K	K	kip-ft	kip-it	klp-ft	
Dead Only	40.15	-0.00	-0.00	-1.34	1.02	-0.00	
.2 Dead+1.6 Wind 0 deg - No ce	48.18	0.15	-29.68	-3339.78	-15.92	1.27	
.9 Dead+1.6 Wind 0 deg - No	36.14	0.15	-29.68	-3299.43	-16.06	1.27	
.2 Dead+1.6 Wind 30 deg - No	48.18	14.76	-25.61	-2881.40	-1654.24	-2.44	
.9 Dead+1.6 Wind 30 deg - No	36.14	14.76	-25.61	-2846.53	-1634.81	-2.45	
2 Dead+1.6 Wind 60 deg - No	48.18	25.46	-14.80	-1664.94	-2854.59	-5.55	
9 Dead+1.6 Wind 60 deg - No	36.14	25.46	-14.80	-1644.64	-2820.82	-5.56	
2 Dead+1.6 Wind 90 deg - No	48.18	29.39	-0.06	-7.50	-3297.70	-7.16	
9 Dead+1.6 Wind 90 deg - No	36.14	29.39	-0.06	-7.02	-3258.63	-7.17	
2 Dead+1.6 Wind 120 deg - o Ice	48.18	25.57	14.74	1657.21	-2870.52	-6.79	
9 Dead+1.6 Wind 120 deg - o Ice	36.14	25.57	14.74	1637.79	-2836.55	-6.81	
2 Dead+1.6 Wind 150 deg -	48.18	14.67	25.64	2884.07	-1646.52	-4.55	
9 Dead+1.6 Wind 150 deg -	36.14	14.67	25.64	2849.99	-1627.17	-4.56	
2 Dead+1.6 Wind 180 deg -	48.18	0.05	29.62	3329.50	-7.32	-1.14	
9 Dead+1.6 Wind 180 deg -	36.14	0.05	29.62	3290.12	-7.53	-1.15	

tree There are	Job	Page
tnxTower	NY001 (Vista)	13 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14	 <i>K</i> -14.59 -14.59 -25.37 -25.37 -29.31 -25.41 -25.41 -14.69 	<u>K</u> 25.64 14.80 14.80 -0.07 -0.07 -14.83 -14.83	kip-ft 2881.18 2847.16 1661.65 1642.21 -12.97 -12.39 -1672.61 -1652.18	kip-ft 1634.68 1614.87 2846.38 2812.08 3289.74 3250.14 2853.23	kip-ft 2. 2. 5. 5. 7. 7. 7. 6.
36.14 48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14	-14.59 -25.37 -25.37 -29.31 -29.31 -25.41 -25.41	25.64 14.80 -0.07 -0.07 -14.83	2847.16 1661.65 1642.21 -12.97 -12.39 -1672.61	1614.87 2846.38 2812.08 3289.74 3250.14	2. 5. 7. 7.
36.14 48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14	-14.59 -25.37 -25.37 -29.31 -29.31 -25.41 -25.41	25.64 14.80 -0.07 -0.07 -14.83	2847.16 1661.65 1642.21 -12.97 -12.39 -1672.61	1614.87 2846.38 2812.08 3289.74 3250.14	2. 5. 7. 7.
48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14	-25.37 -25.37 -29.31 -25.41 -25.41	14.80 14.80 -0.07 -0.07 -14.83	1661.65 1642.21 -12.97 -12.39 -1672.61	2846.38 2812.08 3289.74 3250.14	5. 5. 7. 7.
48.18 36.14 48.18 36.14 48.18 36.14 48.18 36.14	-25.37 -25.37 -29.31 -25.41 -25.41	14.80 14.80 -0.07 -0.07 -14.83	1661.65 1642.21 -12.97 -12.39 -1672.61	2846.38 2812.08 3289.74 3250.14	5. 5. 7. 7.
36.14 48.18 36.14 48.18 36.14 48.18 36.14	-25.37 -29.31 -29.31 -25.41 -25.41	14.80 -0.07 -0.07 -14.83	1642.21 -12.97 -12.39 -1672.61	2812.08 3289.74 3250.14	5. 7. 7.
36.14 48.18 36.14 48.18 36.14 48.18 36.14	-25.37 -29.31 -29.31 -25.41 -25.41	14.80 -0.07 -0.07 -14.83	1642.21 -12.97 -12.39 -1672.61	2812.08 3289.74 3250.14	5. 7. 7.
48.18 36.14 48.18 36.14 48.18 36.14	-29.31 -29.31 -25.41 -25.41	-0.07 -0.07 -14.83	-12.97 -12.39 -1672.61	3289.74 3250.14	7. 7.
48.18 36.14 48.18 36.14 48.18 36.14	-29.31 -29.31 -25.41 -25.41	-0.07 -0.07 -14.83	-12.97 -12.39 -1672.61	3289.74 3250.14	7. 7.
36.14 48.18 36.14 48.18 36.14	-29.31 -25.41 -25.41	-0.07 -14.83	-12.39 -1672.61	3250.14	7.
48.18 36.14 48.18 36.14	-29.31 -25.41 -25.41	-0.07 -14.83	-12.39 -1672.61	3250.14	7.
48.18 36.14 48.18 36.14	-25.41 -25.41	-14.83	-1672.61		
36.14 48.18 36.14	-25.41			2853.23	6.
36.14 48.18 36.14	-25.41			2853.23	6.
48.18 36.14		-14.83	-1652.18		
48.18 36.14		-14.83	-1652.18		
36.14	-14.69			2818.83	6.
36.14	-14.69				
		-25.61	-2883.46	1651.59	4.
_	-14.69	-25.61	-2848.56	1631.52	4.
78.54	-0.00	-0.00	-7.09	1.84	0.
78.54	0.05	-9.13	-1048.02	-3.80	0.
					_
78.54	4.56	-7.89	-906.20	-516.69	-0.
70 6 4	204				
78.54	7.86	-4.56	-526.93	-892.12	-1.
70 64	0.07	0.02	0.73	1010 00	
10.34	9.07	-0.02	-9.72	-1030.22	-1,
78 54	7 99	4 53	510.03	-905 50	-1.4
70.54	7.00		210.01	•075.55	-1.5
78 54	4 52	7 80	802 72	-512.89	-1.0
70.24		7.07	0,720,720	-512.05	-1.0
78.54	0.01	9.11	1031.83	0.40	-0.3
	<i></i>	2181	1001.00	0.10	-04
78.54	-4.51	7.90	892.84	514.22	0.0
					2.0
78.54	-7.83	4.56	512.82	892.83	1.3
78.54	-9.05	-0.01	-9.41	1031.03	1.6
78.54	-7.84	-4.56	-527.48	893.87	1.5
78.54	-4.53	-7.88	-905.84	517.40	1.0
			-826.26	-3.20	0.3
				-408.02	-0.6
					-1.4
					-1.8
					-1.7
					-1.1
					-0.2
					0.6
					1.4
					1.7 1.6
	-6.31 -3.65	-3.69 -6.37	-414:29	705.75	
	78.54 78.54 78.54	78.54 7.88 78.54 4.52 78.54 0.01 78.54 -4.51 78.54 -7.83 78.54 -7.83 78.54 -9.05 78.54 -7.84 78.54 -7.84 78.54 -4.53 40.15 0.04 40.15 6.33 40.15 6.35 40.15 3.65 40.15 3.65 40.15 -3.62 40.15 -6.31 40.15 -6.31 40.15 -6.31	78.54 7.88 4.53 78.54 4.52 7.89 78.54 0.01 9.11 78.54 -4.51 7.90 78.54 -7.83 4.56 78.54 -7.83 4.56 78.54 -9.05 -0.01 78.54 -7.84 -4.56 78.54 -7.84 -4.56 78.54 -7.84 -4.56 78.54 -7.84 -6.37 40.15 0.04 -7.38 40.15 6.33 -3.68 40.15 6.35 3.66 40.15 3.65 6.37 40.15 0.01 7.36 40.15 -3.62 6.37 40.15 -6.31 3.68 40.15 -7.28 -0.02 40.15 -6.31 -3.69	78.54 7.88 4.53 510.03 78.54 4.52 7.89 892.72 78.54 0.01 9.11 1031.83 78.54 -4.51 7.90 892.84 78.54 -7.83 4.56 512.82 78.54 -7.83 4.56 512.82 78.54 -9.05 -0.01 -9.41 78.54 -7.84 -4.56 -527.48 78.54 -7.84 -4.56 -527.48 78.54 -6.37 -7.298 40.15 0.04 -7.38 -826.26 40.15 6.33 -3.68 -412.39 40.15 6.35 3.66 408.49 40.15 6.35 3.66 408.49 40.15 0.01 7.36 821.73 40.15 6.35 3.66 408.49 40.15 3.65 6.37 711.66 40.15 -3.62 6.37 710.93 40.15 -5.61 3.58 409.58 40.15 -7.28 -0.02 -4.20	78.54 7.88 4.53 510.03 -895.59 78.54 4.52 7.89 892.72 -512.89 78.54 0.01 9.11 1031.83 0.40 78.54 -4.51 7.90 892.84 514.22 78.54 -7.83 4.56 512.82 892.83 78.54 -7.83 4.56 512.82 892.83 78.54 -9.05 -0.01 -9.41 1031.03 78.54 -7.84 -4.56 -527.48 893.87 78.54 -7.84 -4.56 -527.48 893.87 78.54 -7.84 -7.38 -905.84 517.40 40.15 0.04 -7.38 -826.26 -3.20 40.15 6.33 -3.68 -412.39 -704.62 40.15 6.35 3.66 408.49 -708.56 40.15 6.35 3.66 408.49 -708.56 40.15 6.35 3.66 408.49 -708.56 40.15 0.01 7.36 821.73 -1.07 40.15 0.637 711.66 -406.12 40.15 -3.62 6.37 710.93 404.67 40.15 -5.21 3.68 409.58 704.05 40.15 -6.31 3.68 409.58 704.05 40.15 -6.31 3.68 409.58 704.05 40.15 -7.28 -0.02 -4.20 813.59

tnxTower

Job

Project

Client

Bennett & Pless 750 Park of Commerce Dr #200 Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:

Monopole Structural Analysis InSite Towers

NY001 (Vista)

14 of 17 Date 16:02:51 03/11/20 Designed by

Page

Chunhui Song

			So	lution Su	ummary		
	Su	um of Applied Force	S		Sum of Reaction	75	
Load Comb.	PX K	PY K	PZ K	PX K	РҮ К	PZ K	% Error
1	0.00	-40.15	0.00	0.00	40.15	0.00	0.000%
2	0.15	-48.18	-29.68	-0.15	48.18	29.68	0.000%
3	0.15	-36.14	-29.68	-0.15	36.14	29.68	0.000%
4	14.76	-48.18	-25.61	-14.76	48.18	25.61	0.000%
5	14.76	-36.14	-25.61	-14.76	36.14	25.61	0.000%
6	25.46	-48.18	-14.80	-25.46	48.18	14.80	0.000%
7	25.46	-36.14	-14.80	-25.46	36.14	14.80	0.000%
8	29.39	-48.18	-0.06	-29.39	48.18	0.06	0.000%
9	29.39	-36.14	-0.06	-29.39	36.14	0.06	0.000%
10	25.57	-48.18	14.74	-25.57	48.18	-14.74	0.000%
11	25.57	-36.14	14.74	-25.57	36.14	-14.74	0.000%
12	14.67	-48.18	25.64	-14.67	48.18	-25.64	0.000%
12	14.67	-36.14	25.64	-14.67	36.14	-25.64	
15	0.05	-36.14 -48.18	29.62	-14.67 -0.05			0.000%
14	0.05				48.18	-29.62	0.000%
		-36.14	29.62	-0.05	36.14	-29.62	0.000%
16	-14.59	-48.18	25.64	14.59	48.18	-25.64	0.000%
17	-14.59	-36.14	25.64	14.59	36.14	-25.64	0.000%
18	-25.37	-48.18	14.80	25.37	48.18	-14.80	0.000%
19	-25.37	-36.14	14.80	25.37	36.14	-14.80	0.000%
20	-29.31	-48.18	-0.07	29.31	48,18	0.07	0.000%
21	-29.31	-36,14	-0.07	29.31	36.14	0.07	0.000%
22	-25.41	-48.18	-14.83	25.41	48.18	14.83	0.000%
23	-25.41	-36.14	-14.83	25.41	36.14	14.83	0.000%
24	-14.69	-48.18	-25.61	14.69	48.18	25.61	0.000%
25	-14.69	-36.14	-25.61	14.69	36.14	25.61	0.000%
26	0.00	-78.54	0.00	0.00	78.54	0.00	0.000%
27	0.05	-78.54	-9.13	-0.05	78.54	9.13	0.000%
28	4.56	-78.54	-7.89	-4.56	78.54	7.89	0.000%
29	7.86	-78.54	-4.56	-7.86	78.54	4.56	0.000%
30	9.07	-78.54	-0.02	-9.07	78.54	0.02	0.000%
31	7.88	-78.54	4.53	-7.88	78.54	-4.53	0.000%
32	4.52	-78.54	7.89	-4.52	78.54	-7.89	0.000%
33	0.01	-78.54	9.11	-0.01	78.54	-9.11	0.000%
34	-4.51	-78.54	7.90	4.51	78.54	-7.90	0.000%
35	-7.83	-78.54	4,56	7.83	78.54	-4.56	0.000%
36	-9.05	-78.54	-0.01	9.05	78.54	0.01	0.000%
37	-7.84	-78.54	-4.56	7.84	78.54	4.56	0.000%
38	-4.53	-78.54	-7.88	4.53	78.54	7.88	0.000%
39	0.04	-40.15	-7.38	-0.04	40.15	7.38	0.000%
40	3.67	-40.15	-6.37	-3.67	40.15	6.37	0.000%
41	6.33	-40.15	-3.68	-6.33	40.15	3.68	0.000%
42	7.31	-40.15	-0.02	-0.33	40.15	0.02	0.000%
43	6.35	-40.15	3.66	-6.35	40.15	-3.66	
43	3.65						0.000%
		-40.15	6.37	-3.65	40.15	-6.37	0.000%
45	0.01	-40.15	7.36	-0.01	40.15	-7.36	0.000%
46	-3.62	-40.15	637	3.62	40.15	-6.37	0.000%
47	-6.31	-40.15	3.68	6.31	40.15	-3.68	0.000%
48	-7.28	-40.15	-0.02	7.28	40.15	0.02	0.000%
49	-6.31	-40.15	-3.69	6.31	40.15	3.69	0.000%
50	-3.65	-40.15	-6.37	3.65	40.15	6.37	0.000%

Non-Linear Convergence Results

Job

Project

Client

Bennett & Pless 750 Park of Commerce Dr #200 Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:

NY001 (Vista) Page 15 of 17 Monopole Structural Analysis Date 16:02:51 03/11/20 InSite Towers Designed by Chunhui Song

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.0000000
2	Yes	5	0.00000001	0.0001678
3	Yes	5	0.00000001	0.0000740
4	Yes	6	0.00000001	0.0001825
5	Yes	6	0.00000001	0.0000531
6	Yes	6	0.00000001	0.0002038
7	Yes	6	0.00000001	0.00002038
8	Yes	5	0.00000001	0.0006700
9	Yes	5	0.0000001	0.0002984
10	Yes	6	0.00000001	0.0001730
11	Yes	6	0.00000001	
12	Yes	6		0.0000499
12	Yes	6	0.00000001	0.0002013
14	Yes	5	0.00000001	0.00005961
14		5	0.0000001	0.00013370
	Yes		0.0000001	0.00005918
16	Yes	6	0.00000001	0.00019423
17	Yes	6	0.00000001	0.00005738
18	Yes	6	0.00000001	0.00017480
19	Yes	6	0.0000001	0.00005074
20	Yes	5	0.00000001	0.00067955
21	Yes	5	0.00000001	0.00030265
22	Yes	6	0.00000001	0.00020795
23	Yes	6	0.00000001	0.00006188
24	Yes	6	0.0000001	0.00017751
25	Yes	6	0.00000001	0.00005134
26	Yes	4	0.00000001	0.00016343
27	Yes	6	0.0000001	0.00022971
28	Yes	6	0.0000001	0.00036197
29	Yes	6	0.00000001	0.00037582
30	Yes	6	0.00000001	0.00023155
31	Yes	6	0.0000001	0.00034631
32	Yes	6	0.00000001	0.00036223
33	Yes	6	0.0000001	0.00022363
34	Yes	6	10000000.0	0.00035835
35	Yes	6	0.00000001	0.00034651
36	Yes	6	0.0000001	0.00023125
37	Yes	6	0.0000001	0.00037944
38	Yes	6	10000000.0	0.00036026
39	Yes	4	0.0000001	0.00025720
40	Yes	5	0.00000001	0.00008119
41	Yes	5	0.00000001	0.00010937
42	Yes	5	0.0000001	0.00004920
43	Yes	5	0.00000001	0.00007694
44	Yes	5	0.00000001	0.00010514
45	Yes	4	0.00000001	0.00023383
46	Yes	5	0.00000001	0.00009541
47	Yes	5	0.00000001	0.00007621
48	Yes	5	0.0000001	0.00004861
49	Yes	5	0.0000001	0.00011590
50	Yes	5	0.00000001	0.00007841

Compression Checks

Pole Design Data

<i>tnxTower</i>	Job NY001 (Vista)	Page 16 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Section No.	Elevation	Size	L	L_u	Kl/r	A	Pu	φ <i>P</i> "	Ratio P _u
	ft		ft	fi		in ²	K	K	¢P _n
L1	150 - 97 (1)	TP31.773x24x0.1875	53.00	0.00	0.0	18.4046	-10.97	1144,93	0.010
L2	97 - 86 (2)	TP33x30.738x0.25	15.50	0.00	0.0	25.9871	-14.26	1780.93	0.008
L3	86 - 66.5 (3)	TP35.872x33x0.399	19.50	0.00	0.0	43.9913	-18.90	3268.34	0.006
L4	66.5 - 36.5 (4)	TP39.772x34.3376x0.441	35.00	0.00	0.0	53.8576	-30.16	4001.35	0.008
LS	36.5 - 0 (5)	TP44.5x38.036x0.484	42.00	0.00	0.0	67.6181	-48.16	5023.69	0.010

Pole Bending Design Data

Section No.	Elevation	Size	Mux	ϕM_{nx}	Ratio M _m	M _{wy}	ϕM_{sy}	Ratio M _{uy}
	ft		kip-ft	kip-ft	$\phi M_{h\pi}$	kip-ft	kip-ft	ψM.
L1	150 - 97 (1)	TP31.773x24x0.1875	608.63	729.39	0.834	0.00	729.39	0.000
L2	97 - 86 (2)	TP33x30.738x0.25	972.95	1199.63	0.811	0.00	1199.63	0.000
L3	86 - 66.5 (3)	TP35.872x33x0.399	1332.03	2326.19	0.573	0.00	2326.19	0.000
L4	66.5 - 36.5 (4)	TP39.772x34.3376x0.441	2123.44	3154.65	0.673	0.00	3154.65	0.000
L5	36.5 - 0 (5)	TP44.5x38.036x0.484	3339.82	4532.90	0.737	0.00	4532.90	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V,	ϕV_a	Ratio V	Actual Tu	фT _n	Ratio T _u
	ft		K	K	ϕV_n	kip-ft	kip-ft	φ <i>T_n</i>
Lİ	150 - 97 (1)	TP31.773x24x0.1875	22.88	572.46	0.040	1.34	1461.91	0.001
L2	97 - 86 (2)	TP33x30.738x0.25	24.11	890.46	0.027	1.34	2404.97	0.001
L3	86 - 66.5 (3)	TP35.872x33x0.399	25.64	1634.17	0.016	1.27	4666.13	0.000
L4	66.5 - 36.5 (4)	TP39.772x34.3376x0.441	27.86	2000.68	0.014	1.27	6327.91	0.000
LS	36.5 - 0 (5)	TP44.5x38.036x0.484	29.72	2511.84	0.012	1.27	9091.92	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _n	Comb. Stress	Allow. Stress	Criteria
Transit of	ft	¢₽,	ф <i>М</i> , ₁₂	<i>фМ</i> _п ,	φ <i>V</i> _n	¢T _n	Ratio	Ratio	
L1	150 - 97 (1)	0.010	0.834	0.000	0.040	0.001	0.846	1.000	4.8.2
L2	97 - 86 (2)	0.008	0.811	0.000	0.027	0.001	0.820	1.000	4.8.2 🚩
L3	86 - 66.5 (3)	0.006	0.573	0.000	0.016	0.000	0.579	1.000	4.8.2 🚩
L4	66.5 - 36.5 (4)	0.008	0.673	0.000	0.014	0.000	0.681	1.000	4.8.2
L5	36.5 - 0 (5)	0.010	0.737	0.000	0.012	0.000	0.747	1.000	4.8.2 🐓

tnxTower	Job NY001 (Vista)	Page 17 of 17
Bennett & Pless 750 Park of Commerce Dr #200	Project Monopole Structural Analysis	Date 16:02:51 03/11/20
Boca Raton, FL 33487 Phone: (605) 540-4623 FAX:	Client InSite Towers	Designed by Chunhui Song

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
LI	150 - 97	Pole	TP31.773x24x0.1875	1	-10.97	1144.93	84.6	Pass
L2	97 - 86	Pole	TP33x30.738x0.25	2	-14.26	1780.93	82.0	Pass
L3	86 - 66 .5	Pole	TP35.872x33x0.399	3	-18.90	3268.34	57.9	Pass
L4	66.5 - 36.5	Pole	TP39.772x34.3376x0.441	4	-30.16	4001.35	68.1	Pass
L5	36.5 - 0	Pole	TP44.5x38.036x0.484	5	-48.16	5023.69	74.7	Pass
							Summary	
						Pole (L1)	84.6	Pass
						RATING =	84.6	Pass

Program Version 8.0.5.0 - 11/28/2018 File:C:/Egnyte/Shared/Projects/2019/19300 - 19499 - Boca/19313.xxx - InSite/19313.018 - NY001 Vista (VZW) 150ft Mono/Calcs/NY001(Vista)_VZW_031120.eri

Structural Components, LLC

MZN	22-G assume ing nut does n
Sheet. Subject:	Notes: Anction bolt stress for TM-222-G assum- between concrets and leveling mut does
19313.016. NYOU1 Vista Irraita	
19313 NY001 Insite	
Job #: Project Cilent:	
NWB 3/11/2020 CS	mopole Spikes Calculator sumptions / Criteria CE/SEI 49-05 SC
Byr. Dat n: Prindpal:	Monapole Spile Accumptions / C ASCE/SEI 48-05 AISC TIA

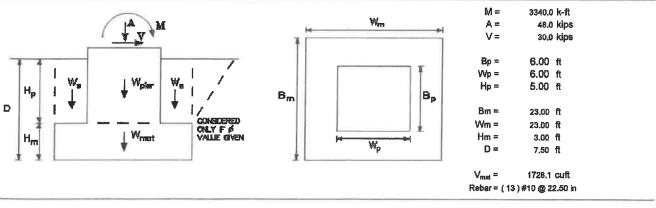
Anction bolt attess for TA-322-03 assumes debuil type 6 connection per figure 4-4. Free length between concrete and leveling nut does not encoved 1° bolt dismeter.

mport data in in </th <th></th> <th>đ (</th> <th>boft ctrcle</th> <th></th> <th></th> <th>Per Piece</th> <th>Per Piece</th> <th></th> <th>dist centoid to</th> <th>dist centroid to auter</th> <th>Properties</th> <th></th> <th></th> <th>RFD A</th> <th>(SD</th> <th>4/3rds</th>		đ (boft ctrcle			Per Piece	Per Piece		dist centoid to	dist centroid to auter	Properties			RFD A	(SD	4/3rds
2.28 81.6 11 WM 3.348 1.238 14 25.75 1.126 45.47 1600133 50.15 164.18 646.13 2.75 60.25 105 125 1.4 25.75 1.175 45.47 1600133 50.15 1118.40 1.0 1.2 1.05 1.2 2.00.13 1.175 41.79 5713.06 2111 1118.40 1.0 1.2 1.2 2.00.13 1.1375 1.479 5713.06 2111 1118.40 1.05 1.25 1.25 2.01.3 1.375 1.479 5713.06 213.04 206.13 206.12 206.12 206.12 206.12 206.12 206.12 206.12 2100.40 1118.40 409.64 1118.40 409.64 217.06 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 41.70 <th>feet</th> <th>ag re</th> <th>ê e</th> <th>≥ <u>'</u>Ø</th> <th>2 6</th> <th>A relationly in²</th> <th>ls reinf only in⁴</th> <th>c dualitity</th> <th>centraid In</th> <th>retht, Fiber In</th> <th>Aur fotal In²</th> <th>lix total In⁴</th> <th></th> <th>Mmax</th> <th>Mmax</th> <th>Mmax</th>	feet	ag re	ê e	≥ <u>'</u> Ø	2 6	A relationly in ²	ls reinf only in ⁴	c dualitity	centraid In	retht, Fiber In	Aur fotal In ²	lix total In ⁴		Mmax	Mmax	Mmax
105 125 4,828 2,807 3 30,13 1,375 4,79 61,230 61,24,26 61,253 61,250 61,253 61,253 61,253 61,253 61,253 61,253 61,263 61,263 61,263 61,263 61,263 61,263 61,263 61,263 61,263 61,263 61,263 61,263 61,263 623,463 220,463	polt	2.25	81.5	11	100	3.748	1.258	14	25.75	1 126	127.24	4 Enot 60	tes er	Tech en	T-N	19
125 17 20.02 14.11 04.27 20.02 21.0.11 04.28 21.0.11 04.28 21.0.11 16.04 20.25 21.0.11 16.04 20.25 21.0.11 16.04 20.25 21.0.12 20.25 20.00 20.25 21.0.11 16.04 20.25 20.25 20.00 20.25 21.0.11 16.04 20.25 20.25 20.00 20.25 21.0.11 16.04 20.25 20.00 20.25 21.00 20.25 20.25 20.00 20.25	ainf	2.75	80,25	105	225	4,928	2.807	47	30.13	4 1976	UL PP	Contraction of		ROBELE	R/ CONT	4501.12
120 12 20.62 21B04.68 F12.80 4936.98 2234.64	-			404	40.6				2 40	6/2")	14./2	8/13.06	213.11	1678,26	1118.84	1481.78
				5	9			11	20.62		60.25	Z1B04.68	812,89	4836.96	3224.64	4299.52

3340.00 ket	48.00 k	30,00 k
Mamont required	Adal required	Shear required

ARD.		1 at star		
		LACU.		
a	2,00	e		0,90 0,75
Allowable Stress	1,33	\$ 76	9	
Avdal Max Bolt	194,8 k	Axial Max Bolt	242	243 6 k
Atrial Max rehr!"	250.0 k	Axtal Max reinf	335	335.D k
Shear Max Bolt	108.3 k	Shear Max Bolt	801	109.6 k
Strees at reinf	56.2 km	Strees at rolnt	·]
Avial for Boat	1000	Autoritation State		
Avial to vaint		about the state	og l	
Sheer to Pot	1	Choose for Darling		14'0 K
Provident to both the internation commentation	100 R	Silveri to DOL		1.5 K
Culles Diete Anabusta	"of losing the			
	COOL INUE		Evan TRUE	
Kound or Square	(round=1	(round=1,square=0)	(round=7,squaree0)	(Consulariy
Plate Thickness	2.25 in		2.25 in	
Pole Base Dismeter	44.5 In		44.5 in	
Plate Yield	15) (S)		120 05	
Bendline	25.92 ih		25.82 in	
Inclusion Angle	60,44 dag		60.44 deg	
5	11 05'5		2.85 In	
6	0.95 lm		0.00 in	
රි	0,00 In-		0.00 in	
å	0,00 in		0.00 in	
BL	156.3 k		152,5 k	
BL ₂	141.1 K		0.0 k	
81.9	0.0 4		0.0 K	
BL	0.0 k		0.0 k	
Mr,	547.1 klp*(n		670.3 kip*ln	
M ¹ 2	268,0 kip"in		0.0 Np*In	
	0.0 kip"in 0.0 kip"in		0.0 Mp ⁴ in 0.0 Mp ⁴ in	
ABD				
Bending Stress	37,3 Ical		39.8 kel	
Allowable Stream	50,0 km		50.0 kei	
Ratic	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		0.7%	
LRED				LRFD Ratings
Bending Stress	37.3 losi		39,8 ksi	Plate
Allowattie Streas Satio	45.0 ksl		46,0 kal	Bolt

89% 82%



PROJECT No:	19313.018	ENG:	NWB
PROJECT NAME:	NY001 Vista	CHK:	JB
	InSite Towers		
DATE:	March 11, 2020	PAGE:	of

SINGLE GLOBAL FOUNDATION WITH PIER(s) CHECKS

TIA-222-G

Global '	Tower Reactions	Fectored Loads	Ca	lculated Reactions	5	Factored R	esistance			
TIA-G	Maximum Moment	3,340.00 k	-ft Di	sturbing Moment	3,580.0	5,580.7	k-ft	pass	64.2%	[GOVERNS
DEIA-F	Axial Load	48.00 k	ips Ma	aximum Bearing	3.14	5.25	kips	pass	59.9%	
-	Shear Load	30.00 ki	ips Pu	nching Shear	574.A	2,014.2	kips	pass	28.5%	
	Pier Rebar Required	(minimum only, u	se PCACOL f	or total quantity)	(17)#10@1;	2.20 in **Mil				
	Rebar Required	(checked rebar fo	or 6" min to 24	" max spacing)	(13) #10 @ 22	2.50 in			SF=3.12]
oil Par	ameters	Solis Report			Pier Geome	trv		Pad Geome	trv	
	Ó	30.0 °			Qty of Piers	1		Width (Bm)	23.00	ft
	Water Level	10.00 ft	(3.05 m)		Width (Bp)	6.00	ft	Width (Wm)	23.00	
	Soil Dry Density (γ dry)		rf (18.8 kN		Width (Wp)	6.00		Height (Hm)	3.00	
	Soil Sub Density (y sub)		f (8.95 kN		Height (Hp)	5.00		Depth (D)	7.50	
	All. Bearing Pressure		af (167.6 kF		Pier Type	R		Bopin (B)	1.00	
	Bearing Safety Factor	2	. (Conc y dry	0.150	kcf (23.6)			
oncrøte	Depth (above) Depth (dry) Depth (submerged) Volume (above) Volume (dry) Volume (submerged) Total Se Reinforcing Design fc fy	0.00	0.00 587.00 28 0 1587 ii (27 ii (41	- ft 4.50 ft <u>-</u> ft ³ 331.79 ft ³ <u>0.00</u> ft ³ <u>2832</u> ft ³ <u>6 MPa</u>) 3.7 MPa) PIER	Axial Down Weight of C Weight of S Total Down Resisting M Moment Re Bearing Cap Contact Are Calculate et Calculate (c	Concrete (Soil (r Ioad (P) Ioment An esistance Dacity Chasa ccentricity	not factored) M BCK	48.0 259.2 339.8 647.0 11.5 5580.7 (x 0.76, cl 0.4.1) 529.00 5.53 5.97		kips kips(64.0yd: kips kips fi k-fi fi ² fi [>L/6]
	Steel (Metric/ASTM)			STM	1) $q_{max} = P_i$,		Annotes	ft
	Bar size	10 #		40 #	2) $q_{max} = 2f$		-/	3.14		ksf [GOV]
		1.270 In ²		.270 in ²	q allowable			5.25		ksf
ab Reir	nforcing				A SIGMEDIE			(2 • 0.75)		
	1/2 Disturbing Moment	1790.00 kir	o-ft					(= ····)		
	Ku	71.47	W	gt of Rebar	Check for 2-	Way She	ar (Punchin	a)		
	ρ	0.00134		5.056 lbs	Shear Area (I		•	73.72		ft²
	$4/3 \circ \rho$ if $\rho < \rho \min$	0.00178			Factored Bea	•		1.223		ksf
	p min ≥ 0.0018	0.00180			Factored She	•		574.36		kips
	As	15,90 in ²	1		Factored She		nce	2014.2		kips
	Number of bars		rsoni 2	2.50 in c/c	Check for 2-w			0.29		· · · P· •
	The 1/2 moment is derived from							(ACI-318)		
	the uplift and download compon	•	-							

Attachment 2: Collocation Application

WORKSHEET 1 OF 2 (COMPLETE BOTH WORKSHEET TABS)

Ins			TOMER	A Site Application Fee to) be paid upon submission of thi
low	ers,LLC	DATE SUBMIT		1	Customer Application
COMPANY NAM	E: Verizon Wireless	CUSTOMER	INFORMATION		
ENTITY Type: i.e. Inc., LL			PHONE		
	C. New York		SERVICE (PCS, SMR		
		CUSTOMER	ADDRESSES	•	
COMPANY Address	: One Verizon Way, Ma		CITY/STATE: Basking R	idoe, NJ	ZIP : 07920
BILLING Address	: One Verizon Way, Ma	II Stop 4AW100	CITY/STATE: Basking R	idge, NJ	ZIP: 07920
	1: One Verizon Way, Ma	il Stop 4AW100	CITY/STATE: Basking R	idge, NJ	ZIP : 07920
NOTICE Address 2	2:		CITY/STATE:		ZIP :
		CUSTOME	R CONTACTS		
	Marla Dimitrakiou			973-452-1989	
SIGNATORY NAME	Site Acquisition Agent			md@streamlinesaq.	.com
	Director, Network Field	- Engineering	E-MAIL Address		
EMERGENCY CONTACT		a Engineening	PHONE		
TITLE			E-MAIL Address:		
TECHNICAL/OPS	Brett Liquori		PHONE:		
	Construction Manager		E-MAIL Address:	bliquori77@gmail.co	m
	Simerdeep Kaur		PHONE	917-693-9999	
	RF Engineer			simerdeep.kaur@ve	rizonwireless.com
BILLING CONTACT			PHONE:		
LEGAL CONTACT			E-MAIL Address: PHONE:		
TITLE			E-MAIL Address:		
		SITE INFO	RMATION		
CUSTOMER Site #/ Name	171228 / EAST WOO	the second se	INSITE Site # and Name:	NY001/ Vista	
SITE LATITUDE	41,214444		SITE LONGITUDE:		
	377 Smlth Ridge Road	, South Salem	CITY:	Westchester	
STATE		10590	STRUCTURE TYPE:		
Current install: (12) anten	nas (6) RRU (3) Surge	(12) coax (3) Hybrid	N OF COLOCATION OF (3) GPS (3) GPS lines.		
antennas. Replace (3) Ana antennas. Replace (3) exis eased Alcatel Lucent AW RRH 2x60 with (3) Nokia / ights to (3) SNBHH-1D65 nstalled and documenting	drew SBNHH-1D65A_P sting Alcatel Lucent AW S RRH 2x80 with (3) Ins AirScale RRH 4T4R B5 A antennas and (3) Alca DBX antennas are 6563 GPS lines. Reserved	ORT 1 - 45_00DT_2 S RRH 2x60 with (3) stalled Nokia ALCAT 160W AHCA, Rema atel Lucent AWS RR 5A instead of 8585A rights: (3) antennas	50 (550598) with Andrew 5 130 (550601) with (3) Am Nokia AlrScale Dual RRH EL B13 RRH 4X30, Repla- oving (3) SBNHH-1D65A H 2x60 RRH (12) 1 5/8" c (similiar is size). Final col (3) RRH (12) coax plus (2 COMPACT TO DE DE	drew JAHH-65BR3B H 4T4R B2/66a 320W ace (3) not installed A antennas & (6) coax. coax. Documenting 3r nfig: (9) antennas (9) b) dish (2) dish lines la	_1DT_2100 (740157) / AHFIC, Replace (3) Notatel Lucent AWS Retaining reserved d GPS and it's line 0 RRH (3) Surge (6)
			QUIPMENT TO BE RE	MOVED	
9) Andrew SBNHH-1D65,	A (3) Alcatel Lucent AV	/S RRH 2x60 (6) 1 5	/8" coax		
and the second		APPLICATION	PREPARED BY		
	Maria Dimitrakiou			973-452-1989	
COMPANY:	Streamline Site Acquisi	tion Services LLC	ADDRESS:	3 Denise Drive, Kinne	on, NJ 07405
	Site Acquisition Agent			nd@streamlinesag.c	

EXHIBIT Equipment

Site Name and #: NY001/ Vista

.

1

Licensee Name: Verizon Wireless

The mounting method and exact location of the space and equipment listed herein shall be subject to inSite's approval.

POWER provided by	. Utility Con	npany Direct			TELCO provide	ed by: T1		
Power Requirements	Amps	200	Volts	120/240	No. of Or	niets: None		
Generator Provided by		Make	CO SEA		: 50 Kw		Committee	
THE REPORT OF A	1		Energy	1 The second sec	0-	Fuel Type: Nat. Gas	Capacity:	1,000
Batteries		Two (2)		GNB Absolyte		lodel 100G33		1.1.1
	Note	e: audible alarms relat			nent shall be permanently dis	abled at unmanned sites	1.2	1000
			SPACE RE	QUIREMENTS &	RADIO INVENTORY		No. Station	
Type of Space Required			Floor:	No	Total Square	Feet: 808 sq. ft.	CONCEASED.	
Dimensi	ons of Equipme	ent Floor/Ground Space:	47'-6" x 17'		Equipment He	sight: N/A	100000000000000000000000000000000000000	
0	mannione of C	enerator Ground Space:	inside shelt	er included in	Dimer	nsions of Fuel Tank Ground Space	Included in	-
and the second		the second s	above		Dime	ISIONS OF FUEL TARK GIOUND Space	a Incinged IU	apove
No. of Transmitters (Tx)		Transmitter	Make/Model:	In shelter		Transmitter Power Outp	it N/A	
No. of Receivers (Rx)	Four (4)	Receiver	Make/Model:	In shelter		Transmitter ER	2: N/A	
Cabinet also contains	N/A							
Sound Street		EQUIPME	NT LOADIN	IG DESCRIPTIO	N (FINAL CONFIGURATI	ION)	1000 C 1000	-
A CONTRACTOR OF A		Sector 1		Sector 2	Sector 3	DISH(ES)	OTH	ĒR
Antenna Type (1)	Panel		Panel		Panel	Parabolic	GPS	
# of Antennas (1)/ Sector:	Two (2)		Two (2)		Two (2)	Two (2) Reserved	Three (3)	
Tx, Rx or Both:	Both		Both		Both	TBD	Receive	
Antenna Manufacturer (1):			Andrew		Andrew	TBD	PCTEL	
Antenna Model (1):			JAHH-65BF		JAHH-65BR3B	TBD	GPS-TMG-H	IR-26
Antenna Dimensions (1):	72" x 13.8"	x 8.2"	72" x 13.8" :	x 8.2"	72" x 13.8" x 8.2"	One Foot (1')	5" x 3.2" dia	í.
Antenna Weight (1):			63.3 (bs		63.3 lbs	TBD	0.6 lbs	
Antenna RAD Ctr (1):			123.5		123.5'	at licensors discretion	73,5	
Antenna Type (2):			Panel		Panel	N/A	N/A	
# of Antennas (2)/ Sector.	One (1) Re	served	One (1) Res	served	One (1) Reserved	None	None	
Tx, Rx or Both			Both		Both	N/A	N/A	
Antenna Manufacturer (2);			Commiscope	6	Commscope	N/A	N/A	-
Antenna Model (2):	SBNHH-1D	065A	SBNHH-1D	55A	SBNHH-1D65A	N/A	N/A	
Antenna Dimensions (2):	55 x 11.9"	x 7.1 ⁸	55" x 11.9" :	K 7:1"	55" x 11.9" x 7.1"	N/A	N/A	
Antenna Weight (2):	33.5 lbs		33.5 lbs		33.5 lbs	N/A	N/A	
Antenna RAD Ctr. (2):			123,5		123.5	N/A	N/A	
Antenna Type (3):	Panel		Panel		Panel	N/A	N/A	
# of Antennas (3) Sector:			Оле (1)		One (1)	None	None	
Tx. Rx pr Both.			Both		Both	N/A	N/A	
Antenna Manufacturer (3):			Andrew		Andrew	N/A	N/A	
Antenna Model (3):			DBXNH-656	5A-A2M	DBXNH-6565A-A2M	N/A	N/A	
Antenna Dimensions (3):			50.9" x 11.9	"x 7.1"	50.9" x 11.9" x 7.1"	N/A	N/A	-
Antenna Weight (3):			34.2 lbs		34.2 lbs	N/A	N/A	
Antenna RAD Ctr 3:			123.5		123.5'	N/A	N/A	
# of RRU/RRHs/ Sector (1):			One (1)		One (1)		1011111	1.271
RRU/RRH Manufacturer (1):			Nokia		Nokia		1.1.1.1.1.1.1	
DDI I/DDU Medal /15	AirScale Du	al RRH 4T4R	AirScale Du	al RRH 4T4R	AirScale Dual RRH 4T4R		1.5 2.6	
RRU/RRH Model (1):	B2/66a 320	W, AHFIC	B2/66a 320\	N, AHFIC	B2/66a 320W, AHFIC			
RRU/RRH Dimensions (1):	22" x 12.1" :	x 7.1"	22" x 12.1" x	: 7.1 ^u	22" x 12.1" x 7.1"		12 1-201	
RRU/RRH Weight (1):	79,3 (bs		79.3 lbs		79.3 lbs	THE CAMERAGE	No.	
RRU/RRH RAD Ctr 1:	123.5		123.5'		123.5'			
# of RRU/RRHs/ Sector (2):	One (1)	1	One (1)		One (1)	A Martine and the	1-	
RU/RRH Manufacturer (2)			Vokia		Nokia	1.1-20 - 2.7 FS	10.000	
RRU/RRH Model (2):			Alcatel B13	RRH 4X30	Alcatel B13 RRH 4X30	100203-999	1.2.1	
RRU/RRH Dimension (2):			20.9" x 11.8'		20.9" x 11.8" x 7.5"		125.19	
RRU/RRH Weight (2);			5.6 lbs		55,6 lbs		1000	
RRU/RRH RAD Ctr (2):			23,5		123.5'	11.2.1	17777	
of RRU/RRHs/ Sector (3)			One (1)		One (1)			
Di 1/DOLI Manufacturer'/21			Vokia		Nokia		P.O.S.S.	
	Notes and an other states and and	H 4T4R B5 160W		H 4T4R	ArScale RRH 4T4R	- 1.5 M 2. 2 M 3	12 Po 2 1	
	AHCA		35 160W AH		B5 160W AHCA		and the second	
many and share and shall a share	13.26" x 11.		3.26" x 11.6		13,26" x 11.61" x 6.5"	RANGE BISSING		
RRU/RRH Weight (3)			5.27 lbs		35.27 lbs			
RRU/RRH RAD Ch (3)			23.5		123.5	STATES AND A STATES		
of RRU/RRHs/ Sector (4)			Dne (1)		One (1)	11. 1. S. 2. 2. 2. 1.		
RU/RRH Manufacturer (4)			Veatel Lucer	nt	Alcatel Lucent	- 2 S Y L B - Y S		
RRURRH Model (4)			WS RRH 2		AWS RRH 2x60	ALL REAL PROPERTY.		
RRU/RRH Dimension (4)			0.6" x 5.75"		10.5" x 5.75" x 36.6"			
RRU/RRH Weight (4):			5 lbs		55 lbs			
RRU/RRH RAD CIr (4):			23.5'		123,5'	S		
# of TMAs/ Sector:		the second se	lone		None			
# of Diplexers/ Sector 1			lone		None	- Series States		
of Surge Suppressors/Sctr. (one (1)		One (1)	- 1. TO I. A. M. A. S. S. M.		
Surge Suppressor Make:			aycap		Raycap			
Surge Suppressor Model: I			a ca XX-DC-331	5-DE-//8	RXX-DC-3315-PF-48	12 13 13 13 13 13 13		
LANTING CHUMPHICESCH MALKING	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10-71-90 P	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	UT11140	NN-00-3313-FF-40	-1		
ge Supressor Dimensions;		2* v 10 31* 4	9.5" x 15.73	1 v 1/1 24H	19.5" x 15.73" x 10.31"			

	Sector 1	Sector 2	Sector 3	DISH(ES)	OTHER
Surge Supressor Weight		32 lbs	32 lbs		Please include
Surge Supressors RAD Ctr:	123.5'	123.5'	123.5'	Please include microwave	microwave dish
OTHER:		None	None	dish frequencies below:	frequencies below:
Transmit Frequencies'	1970-1990, 880-890, 891	1.5-894, 746-757, 2110-2130 M	Hz	TBD	N/A
Receive Frequencies:	1890-1910, 835-845, 846	5,5-849, 776-787, 1710-1730 M	Hz	TBD	N/A
# of Lines;	Two (2)	Two (2)	Two (2)	Two (2) Reserved	Three (3)
Line Size;	1-5/8"	1-5/8"	1-5/8"	Cat5	7/8"
# of Lines:	One (1)	One (1)	One (1)	None	None
Line Size:	1-1/4" Hybrid	1-1/4" Hybrid	1-1/4" Hybrid	N/A	N/A
# of Lines;	Four (4) Reserved	Four (4) Reserved	Four (4) Reserved	None	None
Line Size:	1 5/8"	1 5/8"	1 5/8"	N/A	N/A
Mount Type.	T-Arm	T-Arm	T-Am	N/A	Standoff (Qty: 2)
Mount Size:	Twelve Feet (12.5)	Twelve Feet (12,5)	Twelve Feet (12.5')	N/A	N/A

AFFIDAVIT OF MAILING

State of New York))ss:County of Westchester)

Gabrielle Ferrezza being duly sworn, deposes and says that she is over twenty-one years of age and works at 94 White Plains Road, Tarrytown, in the State of New York; that she is a paralegal at Snyder & Snyder, LLP, the attorney for New York SMSA Limited Partnership d/b/a Verizon Wireless in connection with its request for a renewal of its special permit with respect to the existing communications tower at 377 Smith Ridge Road, South Salem, NY. On November 30, 2020, she served notice, a copy of which is attached hereto, upon the following named persons at the address set forth for each person, as shown on the attached list, by depositing said certified notices at the United States Post Office in Tarrytown, New York, a true copy of the said notices, addressed to each one of the persons named.

Gabrielle Ferrezza

Sworn to and subscribed before me this 20° day of November 2020

Z:\SSDATA\WPDATA\SS4\WP\NEWBANM\JoeRollins\LTEZoningAnalyses\SouthSalem(Lewisboro)4\SpecialPermitRenewal2020\Notices\A ffidavit of Mailing.docx

LEWISBORO SUPPLY CO INC RINGS END OF LEWISBORO 382 SMITH RIDGE RD SOUTH SALEM, NY 10590

FOUR HUNDRED ONE STORAGE CORP. PO BOX 751 SOUTH SALEM, NY 10590

FIVE NEPPERHAN AVENUE LLC 3102 RTE 9 COLD SPRING, NY 10516

VISTA FIRE DISTRICT 377 SMITH RIDGE RD SOUTH SALEM, NY 10590 GRANT, JAMES F.JR. & ELIZABETH 389 SMITH RIDGE RD SOUTH SALEM, NY 10590

SAMUELSON, RANDY S. 5 TOMMY'S LANE SOUTH SALEM, NY 10590

387 SMITH RIDGE RD, LLC 387 SMITH RIDGE RD SOUTH SALEM, NY 10590

HABERNY, JOSEPH A. & JEANINE M. 371 SMITH RIDGE RD SOUTH SALEM, NY 10590 SMITH RIDGE ASSOC.LLC 450 OAKRIDGE COMMONS SOUTH SALEM, NY 10590

KENNA, MEGAN & BARBOSA, AUSTIN 7 TOMMY'S LANE SOUTH SALEM, NY 10590

E B TREES, INC. 391 SMITH RIDGE RD SOUTH SALEM, NY 10590

TOWN OF LEWISBORO

NOTICE OF PUBLIC HEARING

<u>NOTICE IS HEREBY GIVEN</u> that the Planning Board of the Town of Lewisboro, Westchester County, New York will convene a Public Hearing on Tuesday, December 15, 2020 at 7:30 p.m., or soon thereafter, using the videoconferencing app Zoom, regarding the following:

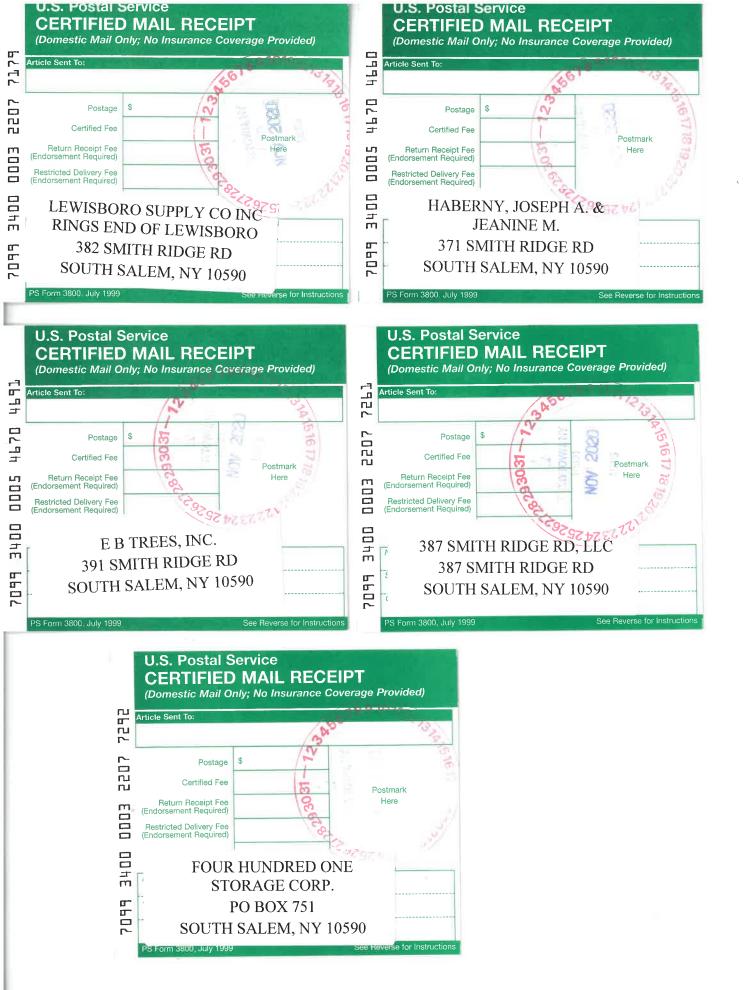
Cal #3-09PB

Application for Special Use Permit renewal to Verizon Wireless at Vista Fire Dept., 377 Smith Ridge Road, South Salem, NY 10590, Sheet 50A, Block 9834, Lots 84, 88 & 94 (Vista Fire District, owner of record) for existing Verizon telecommunication equipment. The subject property consists of approx. 5.94 acres and is located in a One-Acre Residential (R-1A) Zoning District.

Due to public health and safety concerns related to the COVID-19 virus, the Planning Board will not be meeting in person. Per Governor Cuomo's Executive Order No. 202.1, this meeting will be held via Zoom and a transcript will be provided at a later date. The public will have the opportunity to review digital copies of materials and proposed site documents at <u>https://www.lewisborogov.com/planningboard</u>

Interested members of the public are encouraged to provide written comments prior to and during the virtual public hearing by emailing Ciorsdan Conran, Planning Board Administrator, at <u>planning@lewisborogov.com</u> Please check the meeting agenda posted on the Board's web page for additional instructions and updates.

The public may view or participate through the Zoom app at <u>https://zoom.us/j/98541138858?pwd=Y1VidHA1dXJjaXBTR0RTdFJjcUIFdz09</u> by clicking "Join a Meeting," and entering Meeting ID: 985 4113 8858 Passcode: 515716. You may call in to the Zoom meeting at 1-929-205-6099 when prompted, enter Meeting ID: 985 4113 8858 Passcode: 515716.


Persons wishing to object to the application should file a notice of objection with the Planning Board together with a statement of the grounds of objection prior to the closing of the Public Hearing. All interested parties are encouraged to view the Public Hearing and all will be provided an opportunity to be heard.

> PLANNING BOARD TOWN OF LEWISBORO By: Janet Andersen Chair

Dated: November 30, 2020

The Town of Lewisboro is committed to equal access for all citizens. Anyone needing accommodations to view or participate in this meeting is encouraged to notify the Administrator to the Planning Board in advance.

AFFIDAVIT OF POSTING

State of New York)) ss: County of Westchester)

Gabrielle Ferrezza, being duly sworn, deposes and says that she is over twenty-one years of age and works at 94 White Plains Road, Tarrytown, in the State of New York; that she is a paralegal at Snyder & Snyder, LLP the attorney for New York SMSA Limited Partnership d/b/a Verizon Wireless in connection with its request for a renewal of its special permit with respect to the existing communications facility at 377 Smith Ridge Road, South Salem, NY. That on the 8th day of December, 2020, she posted notice at the property. A photograph of the sign has been attached hereto.

Gabrielle Ferrezza

Sworn to and subscribed before me this day of December 2020

NOTARY PUBL

Z:\SSDATA\WPDATA\SS4\WP\NEWBANM\Joe Rollins\LTE Zoning Analyses\East Woods\Special Permit Renewal 2020\Notices\Affidavit Of Posting.Docx

NOTICE This property is the subject of an application before the Lewisboro Planning Board. Lewisboro Planning Board interested parties A Public Hearing has been scheduled at which time all interested parties will be afforded an opportunity to be heard.

Please contact the Planning Board Secretary at 914-763-5592 or visit <u>www.lewisborogov.com</u> for additional information

Ciorsdan Conran

From:	Joseph Neu <jneu@neugroup.com></jneu@neugroup.com>
Sent:	Thursday, December 10, 2020 6:55 AM
То:	Ciorsdan Conran
Cc:	Tony Goncalves; Brian Porco; jim.moreo@cornerstone.it; Robert Cummings
Subject:	Re: Lewisboro, NY Wireless infrastructure back-up power language

Clarifying language on UPS: UPS, should be of the "on-line/double conversion" type, meaning that the load is always on the batteries which means there is literally zero down time between switches from line to gen, back to line.

Joseph Neu Founder and CEO NeuGroup Connect. Exchange. Distill. m <u>+1 917 744 8061</u> jneu@neugroup.com

On Dec 9, 2020, at 6:04 PM, Joseph Neu <jneu@neugroup.com> wrote:

Ciorsdan,

Below is what the consultant came back with concerning backup power along with added notations from AAB on making the battery in line as a UPS source to support the tower power until the generator kicks in.

We would also like Planning to ask that Town or other emergency services communications equipment be allowed to be installed at no charge on the installation/tower as a condition of new installations and renewal if not already granted under the Agreement. [This is patterned on the recent effort by Vista Fire to do this, Brian Porco copied]. ++

The application is granted upon the further condition that the applicant's wireless communications facility have:

- a) system alarms to alert applicant to a conventional power source failure;
- b) an battery backup uninterruptible power supply capable of operating the facility upon initial power failure for up to 30 minutes; and
- c) a back-up power generator to be demonstrated to the Town to provide power within 30 minutes, be of a sufficient capacity in watts/amperage to power the applicant's wireless communications facility and Town or other emergency services communications equipment provided for under the Agreement with sufficient fuel to operate for more than 72 continuous hours without refueling.

The fuel source shall be LNG (liquified natural gas a/k/a propane) and shall be contained in an above ground storage tank with the fuel capacity necessary to provide the foregoing operational parameters for continued network operations while awaiting refueling in a reasonable period of time, along with remote LNG storage tank monitoring to provide for a low fuel alarm.

Said generator shall be housed in a compartment containing sound-dampening materials to ensure that it does not generate more than 90 db when continuously operating as measured from the closest property line of the subject parcel.

From: Joseph Neu
Sent: Wednesday, December 9, 2020 12:24 PM
To: Brian Porco <brianporco1@gmail.com>
Cc: Tony Goncalves <tonyjg63@gmail.com>; main-antenna-advisory-board-town-of-lewisboro@mail.asana.com
Subject: RE: Lewisboro, NY Wireless infrastructure back-up power language

Here is what CityScape has come back with. Any thoughts before sending it on to planning?

From: Susan Rabold <<u>susan@cityscapegov.com</u>>
Sent: Wednesday, December 9, 2020 11:56 AM
To: Joseph Neu <<u>ineu@neugroup.com</u>>
Cc: Tony Goncalves <<u>tonyig63@gmail.com</u>>
Subject: Re: Lewisboro, NY Wireless infrastructure back-up power language

Greetings,

Please find below draft text for your considerations. You will need to harmonize with your terminology and add relevant information specific to the application but hopefully this will be a good start.

The application is granted upon the further condition that the applicant's wireless communications facility have:

- a) system alarms to alert applicant to a conventional power source failure;
- b) a battery backup power supply capable of operating the facility upon initial power failure for up to 30 minutes; and
- c) a back-up power generator to be demonstrated to the Town be of a sufficient capacity in watts/amperage to power the applicant's wireless communications facility with sufficient fuel to operate for more than 72 continuous hours without refueling.

The fuel source shall be LNG (liquified natural gas a/k/a propane) and shall be contained in an above ground storage tank with the fuel capacity necessary to provide the foregoing operational parameters for continued network operations while awaiting refueling in a reasonable period of time, along with remote LNG storage tank monitoring to provide for a low fuel alarm.

Said generator shall be housed in a compartment containing sound-dampening materials to ensure that it does not generate more than 90 db when continuously operating as measured from the closest property line of the subject parcel.

Please let me know of any questions.

Best regards, Susan

Susan Rabold | Project Manager Greensboro, NC Direct Line: 336-210-0843 LAW OFFICES OF

SNYDER & SNYDER, LLP 94 WHITE PLAINS ROAD

TARRYTOWN, NEW YORK 10591 (914) 333-0700 FAX (914) 333-0743 WRITER'S E-MAIL ADDRESS

NEW JERSEY OFFICE ONE GATEWAY CENTER, SUITE 2600 NEWARK, NEW JERSEY O7102 (973) 824-9772 FAX (973) 824-9774

REPLY TO:

msheridan@snyderlaw.net

November 17, 2020

Tarrytown office

Hon. Chair Janet Andersen and Members of the Planning Board Town of Lewisboro 79 Bouton Road South Salem, NY 10590

> RE: Special Use Permit Approval and Renewal (Cal. #6-12 P.B.) New York SMSA Limited Partnership d/b/a Verizon Wireless' Existing Wireless Telecommunications Facility on the Tower Located at NYS Route 35 and NYS Route 123, New York ("Property")

Dear Honorable Chair Andersen And Members of the Planning Board:

We are the attorneys for New York SMSA Limited Partnership d/b/a Verizon Wireless ("Verizon Wireless") in connection with its application to renew the special use permit ("Renewal") for its existing public utility wireless telecommunications facility ("Facility") at the Property. In connection with the foregoing, we are in receipt of a memo dated November 12, 2020, from the Planning Board's consultant, Kellard Sessions ("Consultant Memo"), which contain comments with regard to the requested Renewal.

In response to the comments contained in the Consultant's Memo, kindly note the following:

Comment

1. On Page 1 of 3 of the Short Environmental Assessment Form (EAF), the applicant shall respond to Question 3 numerically. "NA" is not a sufficient response.

Response

Attached hereto as Exhibit 1 is a revised Short EAF, which now includes a numerical response to Question 3.

Comment:

2. On behalf of the Planning Board, the applicant shall submit Part 2 of the Short EAF.

NEW YORK OFFICE 445 PARK AVENUE, 9TH FLOOR NEW YORK, NEW YORK 10022 (212) 749-1448 FAX (212) 932-2693

LESLIE J. SNYDER ROBERT D. GAUDIOSO

DAVID L. SNYDER (1956-2012)

Response:

Attached hereto as part of Exhibit 1 is Part 2 of the Short EAF.

Comment:

3. We note that the submitted Structural Report prepared by Structural Consulting Services, P.C., does not certify the structural integrity of the tower and the equipment attached to it. The report makes reference to a previous report prepared by another engineering firm and states that based on a site visit "...the existing antenna loading observed on the tower appeared to match the loading use in the most recent structural analysis report on the tower...". It is recommended that a more definitive certification be provided and that any referenced reports be submitted.

Response:

Attached hereto as Exhibit 2 is a revised structural certification, prepared by Structural Consulting Services, P.C., with a revised date of November 13, 2020, that has been updated to note that "[t]he existing antenna loading observed on the tower is consistent with the antenna loading in the most recent structural analysis report on the tower." Such certification now also includes a copy of the most recent structural analysis prepared for American Tower Corporation dated June 13, 2019, as an attachment.

Comment

4. Consistent with past actions of the Board on similar antenna renewal applications, provided the above information in submitted and is satisfactory, it is recommended that the Special Use Permit Renewal for Verizon Wireless be approved indefinitely.

Response:

This comment requires no response.

Based on the foregoing, it is respectfully requested that this Honorable Board approve of the requested Renewal. If you have any questions, please do not hesitate to contact me or Leslie Snyder at (914) 333-0700.

> Respectfully submitted, Snyder & Snyder, LLP

Michael P. Sheridan

MS: sm Enclosures

Verizon Wireless cc:

Z:\SSDATA\WPDATA\SS4\WP\NEWBANM\Joe Rollins\LTE Zoning Analyses\South Salem (Lewisboro) 4\Special Permit Renewal 2020\PB Response Letter 11.17.2020.ms.doc

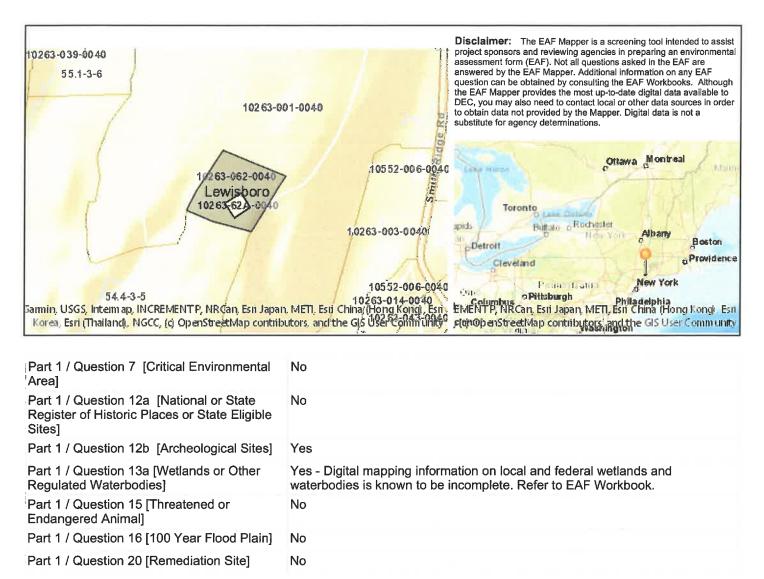
EXHIBIT 1 Revised EAF with Part 2

Short Environmental Assessment Form Part 1 - Project Information

Instructions for Completing

Part 1 – Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.


Part 1 – Project and Sponsor Information							
Name of Action or Project:							
Verizon Wireless Special Permit Renewal for Existing Public Utility Wireless Telecommunications Facility							
Project Location (describe, and attach a location map):							
NYS Route 35 (Leon Levy Preserve), Lewisboro, NY							
Brief Description of Proposed Action:							
The proposed action consists of the renewal of the special permit (Cal. #6-12 PB) for Verizon Wireless' existing public utility wireless telecommunications facility ("Facility") at the subject property.							
Name of Applicant or Sponsor:	Telephone: 914-333-0700						
New York SMSA Limited Partnership d/b/a Verizon Wireless	E-Mail: msheridan@snyderlaw.net						
Address:							
c/o Snyder & Snyder, LLP, 94 White Plains Road							
City/PO:	State:	Zip Code:					
Tarrytown	NY	10591 NO YES					
1. Does the proposed action only involve the legislative adoption of a plan, local law, ordinance, administrative rule, or regulation?							
If Yes, attach a narrative description of the intent of the proposed action and the environmental resources that may be affected in the municipality and proceed to Part 2. If no, continue to question 2.							
2. Does the proposed action require a permit, approval or funding from any other government Agency? NO YES							
If Yes, list agency(s) name and permit or approval:							
3. a. Total acreage of the site of the proposed action? ~0.08 acres b. Total acreage to be physically disturbed? 0 acres c. Total acreage (project site and any contiguous properties) owned or controlled by the applicant or project sponsor? ~0.08 acres							
4. Check all land uses that occur on, are adjoining or near the proposed action:							
🗖 Urban 🔲 Rural (non-agriculture) 🔲 Industrial 🥅 Commercial 🗹 Residential (suburban)							
Forest Agriculture Aquatic I Other(Specify): Wireless Telecommunications Facility							
Parkland							

5.]	is the proposed action,	NO	YES	N/A
	8	a. A permitted use under the zoning regulations?		\checkmark	
	ł	c. Consistent with the adopted comprehensive plan?		\checkmark	
				NO	YES
6.	1	is the proposed action consistent with the predominant character of the existing built or natural landscape?			
7.	I	is the site of the proposed action located in, or does it adjoin, a state listed Critical Environmental Area?		NO	YES
If Yes, identify:					
-	_				
8.	a	. Will the proposed action result in a substantial increase in traffic above present levels?		NO	YES
	ŀ	Are public transportation services available at or near the site of the proposed action?			
		Are any pedestrian accommodations or bicycle routes available on or near the site of the proposed action?			
9.		Does the proposed action meet or exceed the state energy code requirements?		NO	YES
If	the	proposed action will exceed requirements, describe design features and technologies:			
The	Fa	cility meets the state energy code requirements,		\square	
10	. \	Vill the proposed action connect to an existing public/private water supply?		NO	YES
		If No, describe method for providing potable water:	Ī		
The	Fa	cility is unmanned therefore potable water is not required.		\checkmark	
-		•			
11	. V	Vill the proposed action connect to existing wastewater utilities?		NO	YES
		If No, describe method for providing wastewater treatment:			
The	Fa	cility is unmanned therefore wastewater treatment is not required.		\checkmark	
-					
		. Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district n is listed on the National or State Register of Historic Places, or that has been determined by the	ŀ	NO	YES
Commissioner of the NYS Office of Parks, Recreation and Historic Preservation to be eligible for listing on the					
Sta	ate	Register of Historic Places?			×
	1	b. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for			
arc	ha	cological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?			
13		. Does any portion of the site of the proposed action, or lands adjoining the proposed action, contain		NO	YES
	V	vetlands or other waterbodies regulated by a federal, state or local agency?			\checkmark
	b	. Would the proposed action physically alter, or encroach into, any existing wetland or waterbody?			
If	Yes	s, identify the wetland or waterbody and extent of alterations in square feet or acres:			

* N/A to renewal of special permit for existing Facility.

14. Identify the typical habitat types that occur on, or are likely to be found on the project site. Check all that apply:		
Shoreline 🖌 Forest 🗋 Agricultural/grasslands 🗋 Barly mid-successional		
Wetland Urban Z Suburban		
15. Does the site of the proposed action contain any species of animal, or associated habitats, listed by the State or	NO	YES
Federal government as threatened or endangered?		
16. Is the project site located in the 100-year flood plan?	NO	YES
17. Will the proposed action create storm water discharge, either from point or non-point sources? If Yes,	NO	YES
a. Will storm water discharges flow to adjacent properties?		
 b. Will storm water discharges be directed to established conveyance systems (runoff and storm drains)? If Yes, briefly describe: 		
18. Does the proposed action include construction or other activities that would result in the impoundment of water	NO	YES
or other liquids (e.g., retention pond, waste lagoon, dam)? If Yes, explain the purpose and size of the impoundment:	•	
19. Has the site of the proposed action or an adjoining property been the location of an active or closed solid waste management facility?	NO	YES
If Yes, describe:		
20. Has the site of the proposed action or an adjoining property been the subject of remediation (ongoing or	NO	YES
completed) for hazardous waste? If Yes, describe:	•	
I CERTIFY THAT THE INFORMATION PROVIDED ABOVE IS TRUE AND ACCURATE TO THE BI MY KNOWLEDGE	EST OF	
Applicant/sponsor/name: New York SMSA Limited Partnership d/b/a Verizon Wireless Date:	20	
Signature: June Parcie Title: Title: Title: Pres	LES	inte

L

Agency	Use	Only	[If	applica	ble
--------	-----	------	-----	---------	-----

Project:	
Date:	

Short Environmental Assessment Form Part 2 - Impact Assessment

Part 2 is to be completed by the Lead Agency.

Answer all of the following questions in Part 2 using the information contained in Part 1 and other materials submitted by the project sponsor or otherwise available to the reviewer. When answering the questions the reviewer should be guided by the concept "Have my responses been reasonable considering the scale and context of the proposed action?"

		No, or small impact may occur	Moderate to large impact may occur
1.	Will the proposed action create a material conflict with an adopted land use plan or zoning regulations?	\checkmark	
2.	Will the proposed action result in a change in the use or intensity of use of land?	\checkmark	
3.	Will the proposed action impair the character or quality of the existing community?	\checkmark	
4.	Will the proposed action have an impact on the environmental characteristics that caused the establishment of a Critical Environmental Area (CEA)?	\checkmark	
5.	Will the proposed action result in an adverse change in the existing level of traffic or affect existing infrastructure for mass transit, biking or walkway?	\checkmark	
6.	Will the proposed action cause an increase in the use of energy and it fails to incorporate reasonably available energy conservation or renewable energy opportunities?	\checkmark	
7.	Will the proposed action impact existing: a. public / private water supplies?	\checkmark	
	b. public / private wastewater treatment utilities?	\checkmark	
8.	Will the proposed action impair the character or quality of important historic, archaeological, architectural or aesthetic resources?	\checkmark	
9.	Will the proposed action result in an adverse change to natural resources (e.g., wetlands, waterbodies, groundwater, air quality, flora and fauna)?	\checkmark	
10.	Will the proposed action result in an increase in the potential for erosion, flooding or drainage problems?	\checkmark	
11.	Will the proposed action create a hazard to environmental resources or human health?	\checkmark	

Igency	Use	Only	[If a	pplicable]
--------	-----	------	-------	------------

Project: Date:

4

_	_	-	_	_	
			_	_	_

Short Environmental Assessment Form Part 3 Determination of Significance

For every question in Part 2 that was answered "moderate to large impact may occur", or if there is a need to explain why a particular element of the proposed action may or will not result in a significant adverse environmental impact, please complete Part 3. Part 3 should, in sufficient detail, identify the impact, including any measures or design elements that have been included by the project sponsor to avoid or reduce impacts. Part 3 should also explain how the lead agency determined that the impact may or will not be significant. Each potential impact should be assessed considering its setting, probability of occurring, duration, irreversibility, geographic scope and magnitude. Also consider the potential for short-term, long-term and cumulative impacts.

that the proposed action may result in one or more pote	rmation and analysis above, and any supporting documentation, entially large or significant adverse impacts and an
environmental impact statement is required.	
Check this box if you have determined, based on the info that the proposed action will not result in any significant	rmation and analysis above, and any supporting documentation, adverse environmental impacts.
Name of Lead Agency	Date
Print or Type Name of Responsible Officer in Lead Agency	Title of Responsible Officer
Signature of Responsible Officer in Lead Agency	Signature of Preparer (if different from Responsible Officer)

EXHIBIT 2 Revised Structural Certification

Revised November 13, 2020 October 21, 2020

Honorable Chair Janet Andersen And Members of the Planning Board Town of Lewisboro 79 Bouton Road South Salem, NY 10590

RE: New York SMSA Limited Partnership d/b/a Verizon Wireless Site: South Salem
N.Y.S. Routed 35, South Salem, NY 10590
Block 10263; Lots 1 & 62

Honorable Chair Janet Andersen and Members of the Planning Board:

On Thursday, October 15, 2020, our office visited the above referenced site to review the existing Telecommunications Facility by New York SMSA Limited Partnership d/b/a Verizon Wireless. The existing facility consists of a 125-foot self-supported lattice tower with antennas mounted thereon and an equipment room within an existing equipment building located at the base thereof together with related transmission lines, conduits, utility connections, etc. The existing antenna loading observed on the tower is consistent with the antenna loading used in the most recent structural analysis report on the tower prepared for American Tower Corporation by Tower Engineering Professionals, Inc, Raleigh, NC 27603, Eng. Number 12936321_C3_01, dated June 13, 2019 (copy attached), which deemed the existing tower and its foundation to have sufficient capacity to support the antenna loading. At the time of our visit, the existing tower and foundation appeared to be in good condition with no visually apparent signs of defects, damage or deterioration. Attached are some photographs of the tower taken during our site visit for your reference.

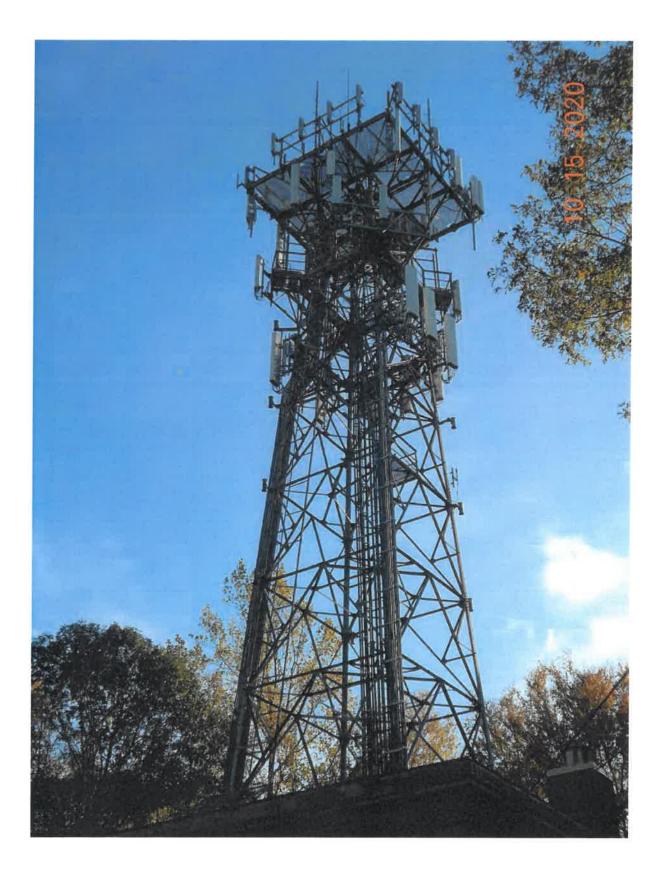
Based on our review of the structural analysis report on the tower and our review of existing conditions, we have concluded that the existing tower and facility meet the requirements of the 2020 Building Code of New York State and that the existing structural integrity of the tower has been maintained.

Should you have further questions, please do not hesitate to contact our office.

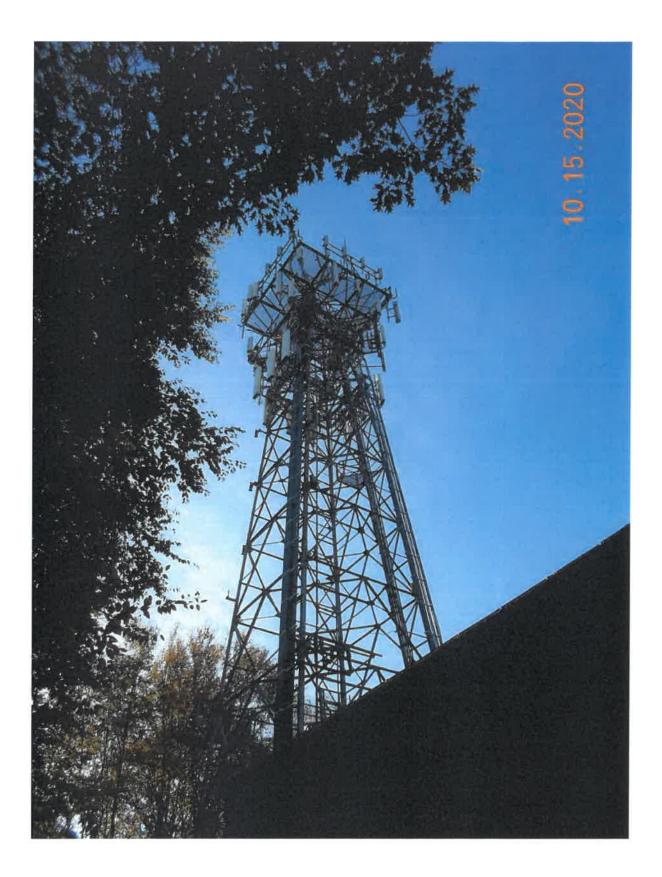
Sincerely,

Structural Consulting Services, P.C.

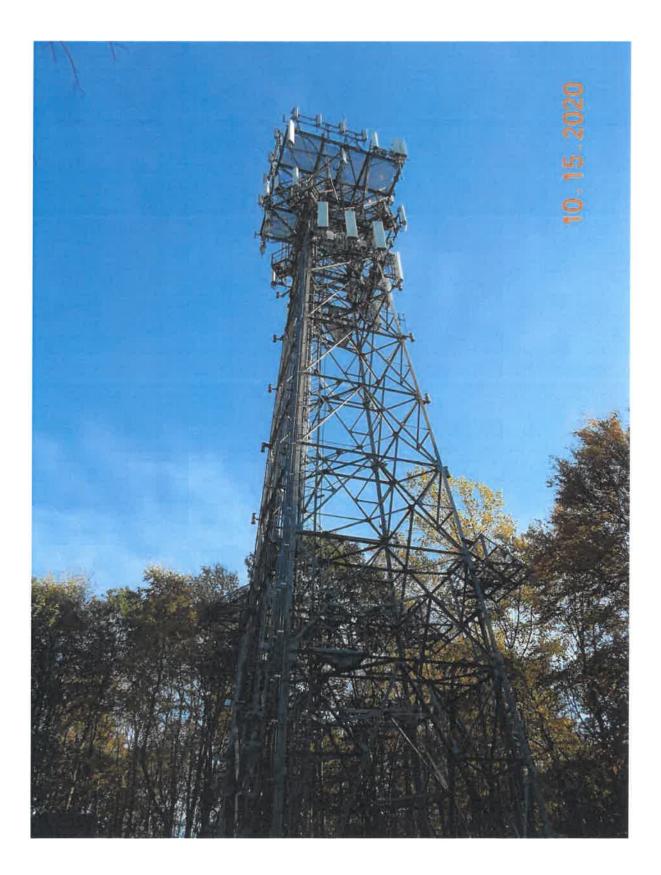
James H. Fahey, P.E., S.E. Principal

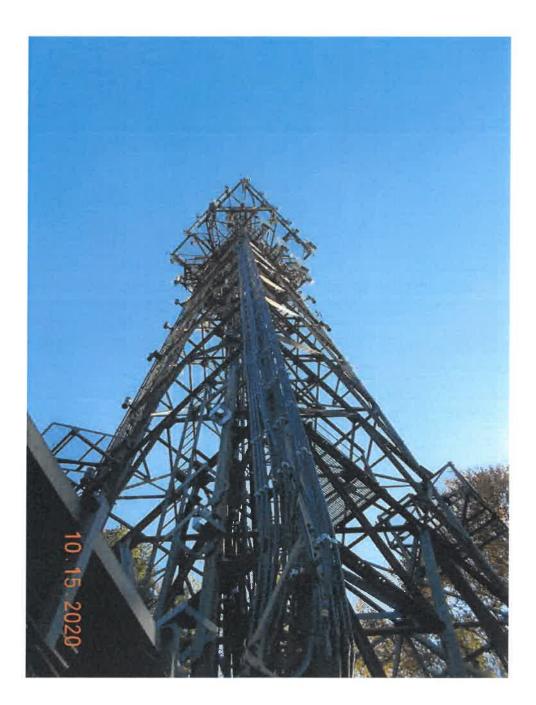

cc: Verizon Wireless Snyder & Snyder

JHF/kap


Attachments

67 Federal Road, Brookfield, CT 06804 Tel: 203.740.7578 Fax: 203.775.5670





T O W E R ENGINEERING PROFESSIONALS

Structural Analysis Report

Structure	:	125 ft Self Supported Tower
ATC Site Name	:	South Salem NY, NY
ATC Site Number	;	88166
Engineering Number	:	12936321_C3_01
Proposed Carrier	:	Verizon Wireless
Carrier Site Name	:	South Salem
Carrier Site Number	:	144861
Site Location	•	Route 35
		South Salem, NY 10590-1923
		41.258500,-73.534700
		41.230300,-73.334700
County	:	Westchester
Date	:	June 13, 2019
Max Usage	*	100%
Result	:	Pass
		2 A A A E F
Prepared By:		Reviewed By:

Prepared By: Austin Wilson TEP

tusting Wilson

Reviewed By:

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	. 2
Equipment to be Removed	2
Proposed Equipment	3
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	. 3
Standard Conditions	4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 125 ft self supported tower to reflect the change in loading by Verizon Wireless.

Supporting Documents

Tower Drawings	HTS Mapping Project #HTS101507
	CSEI Analysis, ATC Eng. #26240121, dated August 21, 2006
Foundation Drawing	Foundation Mapping by TEP Job #071970, dated October 19, 2007
	Rose, Chulkoff And Rose Structural Engineers Job # C67227, dated September 21, 1967
Geotechnical Report	GEOServices Project #21-07254, dated October 29, 2007

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	90 mph (3-Second Gust, V _{sso}) / 116 mph (3-Second Gust, V _{utt})
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2015 IBC
Structure Class:	1
Exposure Category:	В
Topographic Category:	3
Crest Height:	124 ft
Spectral Response:	$Ss = 0.23, S_1 = 0.07$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev. ¹ (ft)	Qty	Antenna	Mount Type	Lines	Carrier
132.0	1	12' Omni		2	OTHER
130.0	3	Raycap RxxDC-3315-PF-48		(12) 1 5/8" Coax	
128.0	3	Commscope SBNHH-1D65B	1	(3) 1 5/8" Hybriflex	VERIZON WIRELESS
125.0	12	Decibel DB844H90E-XY	Platform with Handrail	(12) 1 5/8" Coax	SPRINT NEXTEL
	3	Andrew ETW200VS12UB	Sector Frames		
	3	Ericsson KRY 112 489/2	Sector Frames	(19) 1 5 /0 ^H Com	
122.0	3	Ericsson Radio 4449 B12,871]	(18) 1 5/8" Coax (3) 1 5/8" Hybriflex	T-MOBILE
	3	RFS APX16DWV-16DWVS-E-A20		(S) I S/O HYDRINEX	
	3	RFS APXVAARR24_43-U-NA20	1		
112.5	-	-	Catwalk	-	-
	3	RFS APXVTM14-ALU-I20			1
	3	Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield	1	(3) 1 1/4" Hybriflex Cable (1) 1.54" (39.2mm) Hybrid	SPRINT NEXTEL
111.0	3	Alcatel-Lucent 800 MHz RRH w/ Notch Filter	Caston Francis		
111.0	3	Alcatel-Lucent 1900MHz RRH (65MHz)	Hz) Sector Frames		
	3	RFS ACU-A20-N			
	3	RFS APXVSPP18-C			
	3	Nokia AirScale RRH 4T4R B5 160W AHCA			
	1	Raycap DC6-48-60-18-8F ("Squid")		(2) 0.39" (10mm) Fiber Trunk (4) 0.78" (19.7mm) 8 AWG 6 (2) 2" conduit (12) 7/8" Coax	AT&T MOBILITY
	3	Alcatel-Lucent B25 RRH4x30			
104.0	3	Nokia Airscale Dual RRH 4T4R B12/B14 320W AHLBA	Sector Frames		
[3	Alcatel-Lucent 9442 RRH2x40-AWS			
[3	Alcatel-Lucent RRH4x25-WCS-4R			
[1	Raycap DC6-48-60-18-8F (23.5" Height)			
	9	Commscope NNHH-65C-R4			
	1	5" x 3" x 2" Cavity Filter		(1) 1/2" Coax	
85.0	1	Low Noise Amplifier	Side Arm		SIGFOX S.A.
	1	Procom CXL 900-3LW			
76.0	-	•	Rest Platform	-	-
75.0	1	GPS	Stand-Off	(1) 1/2" Coax	SPRINT NEXTEL
53.0	4	GPS	Stand-Off	(4) 1/2" Coax	VERIZON WIRELESS
25.0	-	π	Rest Platform		

Equipment to be Removed

Elev. ¹ (ft)	Qty	Antenna	Mount Type	Lines	Carrier
128.0	12	Alcatel-Lucent RRH2x60			
128.0	3	Commscope SBNHH-1D65B	-	-	VERIZON WIRELESS
121.0	6	RFS FD9R6004/1C-3L(2.6 lb)			

Proposed Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	3	Nokia AHCA AirScale RRH 4T4R 85 160W			
3		Alcatel-Lucent B13 RRH4x30-4R	Diotform with Linedroit		
128.0	3	Nokia AHFIC AirScale Dual RRH 4T4R B2/66a 320W	Platform with Handrail Sector Frames	-	VERIZON WIRELESS
	6	Commscope JAHH-65B-R3B			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	61%	Pass
Diagonals	100%	Pass
Horizontals	45%	Pass
Anchor Bolts	36%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Uplift (Kips)	145.8	58%
Axial (Kips)	180.5	11%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Twist (°)	Sway (Rotation) (*)
	Alcatel-Lucent B13 RRH4x30- 4R				
	Commscope JAHH-65B-R3B				
128.0	Nokia AHCA AirScale RRH 4T4R B5 160W	VERIZON WIRELESS	0.071	0.005	0.051
	Nokia AHFIC AirScale Dual RRH 4T4R B2/66a 320W				

*Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by ATC Tower Services, Inc. are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of ATC Tower Services, Inc.

It is the responsibility of the client to ensure that the information provided to ATC Tower Services, Inc. and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and ATC Tower Services, Inc., all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. ATC Tower Services, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

Job Information	Location : SOUTH SALEM Base Width : 24.25 ft RELESS Top Width : 9.00 ft -G Tower Ht : 125.00 ft	Shape : Square	Sections Properties	Diagonal Members	BXBX0.625 DAS 33 ksi 3.5X3X0.25 DAE 33 ksi 2.5X2.5X0.25 6X5X0.75 DAE 33 ksi 2.5X2.5X0.25 DAE 33 ksi 2.5X2.5X0.25 6X5X0.635 DAL 33 ksi 2.5X2.3X0.25 DAE 33 ksi 2.5X2.5X0.25 6X5X0.6475 DAL 33 ksi 2.5X2.5X0.25 DAE 33 ksi 2.5X2.5X0.25 6X5X0.4475 DAL 33 ksi 2.5X2.5X0.25 DAE 33 ksi 2.5X2.5X0.25 6X5X0.4475 SAE 33 ksi 2.5X2.5X0.25 SAU 33 ksi 2.5X2.5X0.25 6X5X0.4475 SAE 33 ksi 3.5X3.5X0.25 SAU 33 ksi 3.2X2.5X0.25 6X5X0.3125 SAE 33 ksi 3.3X3.0.25 SAU 33 ksi 3.X2.5X0.25 6X5X0.3125 SAE 33 ksi 3.3X3.0.25 CHN 36 ksi CB x 1 1 5	Discrete Appurtenance	Elev (ft) Type Qty Description	132.00 Whip 1 Generic 12' Omni 128.00 Panei 5 Commascope SNHH-I558 128.00 Santi Alfric AlfScale RNH 41658 128.00 Santi Alfric AlfScale RNH 41058 128.00 Santi Alfric AlfScale RNH 41058 128.00 Santi Alfric AlfScale RNH 41058 128.00 Statish Arm Acatel Lucend B31 RRH4204R 128.00 Straight Arm 12 128.00 S
	© 2007 - 2019 by ATC IP LLC. All rights reserved. Client : VERIZON WIRELESS Code : ANSI/TIA-222-G		Loads: 90 mph no ice 50 mph w/ 3/4" radial ice	Section	1 5AE 33 ks1 2 - 3 5AE 33 ks1 4 - 5 5AE 33 ks1 6 5AE 33 ks1 7 5AE 33 ks1 9 5AE 33 ks1 10 5AE 33 ks1 10 5AE 33 ks1		Ele	
			Sect 19 116.42		Sent 6 Sent 6			Search Se

			3	Job Information	5			—
Tower : 88166			ocat	Location ; SOUTH SALEM	SALEM	Base Width :	dth : 24.25 ft	_
Client : VERIZON WIRELESS	ON WIRELE	SS				Top Wi	Top Width : 9-00 ft	_
Code : ANSI/TIA-222-G	IA-222-G					Tower Ht :	r Ht: 125.00 ft	_
						6	Shape : Square	_
				Linear Ap	Appurtenance	e		_
	Elev (ft) From T	_0	QIY	Description				_
	١.	128.00	6	4 S/A" Huhriflay				-
		128.00	4	1 5/8" COax				_
	880	125.00	N -	Waveguide Ladder Waveguide Ladder				_
		125.00		Climbing Ladder				_
		122.00	e e	1 5/8" Hybrifflex				_
	000	122.00	÷	1 5/8" Coax 1.54" (39.2mm) Hvbri	<u>ivbri</u>			_
	0000	111.00	en [2	1 1/4" Hybriflex Cab 7/8" Coax	Cab			_
	0.00	104.00		2" conduit				_
		104.00	e- 18	2" conduit 0.78" (19.7mm) 8 AWG	AWG			_
	000	104.00	2	0.39" (10mm) FI	ber T			-
	000	75.00		1/2" Coax 1/2" Coax				_
	0.00	53.00	4	1/2 Coax				-
		σ	oba	Global Base Foundation Design Loads	dation De	esign L	oads	_
	Load Case		lome	Moment (k-ft)	Vertical (kip)	(d	Horizontal (kip)	
	DL + WL			5,513.58	78.76		73.70	
	DL + WL +	+ IL		1,860.40	210.43		25.50	_
								1.12
		Individual	ŝ	ial Base Foundation	Indation [Design	Loads	-
	Vertical (kip)	kip)		Uplift (kip)	(d		Horizontal (kip)	
	180.47			145,81			27.14	_
			I					ÿ

2007 - 2019 by ATC IP LLC. All rights reserved.

Site Number: 88166			Code:	ANSI/TIA-222-G	🤗 2007 - 2019 by ATC	PLLC. All rights reserved
Site Name: SOUTH SALE! Customer: VERIZON WIR		·	Engineering Number:	12936321_C3_01		6/13/2019 1:24:25 PM
			Analysis Parar	neters		2
Location:		Westchester County, NY	Height (ft):		125	
Code:		ANSI/TIA-222-G	Base Elevatio	n (ft):	0.00	
Shape:		Square	Bottom Face	Width (ft):	24.25	
Tower Manufa	acturer:	AT&T TAG	Top Face Wid	th (ft):	9.00	
Tower Type: Kd: Ke:		Self Support				
			Ice & Wind Para	meters		
Structure Clas	\$\$:	N	Design Winds	peed Without Ice:	90 mph	
Exposure Category:		в	Design Winds	peed With Ice:	50 mph	
Topographic Category:		3	Operational V	/indspeed:	60 mph	
Crest Height:		124 ft	Design Ice Th	ickness:	0.75 in	
			Seismic Paran	neters		
Analysis Meth	od:	Equivalent Modal Analysis 8	Equivalent Lateral Force M	fethods		
Site Class:		D - Stiff Sc	bil			
Period Based	on Rayleig	h Method (sec): 0.4	19			
T _L (sec):	6		p: 1.3		C _s :	0.077
S ₅ :	0.235		S,: 0.070		Cs, Max:	0.077
Fa:	1.600		F _v : 2.400		Cs, Min:	0.030
S _{ds} :	0.251		S _{d1} : 0.112			

Load Cases

1.2D + 1.6W Normal	90 mph Normal with No Ice
1.2D + 1.6W 45 deg	90 mph 45 degree with No Ice
1.2D + 1.6W 90 deg	90 mph 90 degree with No Ice
1.2D + 1.6W 135 deg	90 mph 135 degree with No Ice
1.2D + 1.6W 180 deg	90 mph 180 degree with No Ice
1.2D + 1.6W 225 deg	90 mph 225 degree with No Ice
1.2D + 1.6W 270 deg	90 mph 270 degree with No Ice
1.2D + 1.6W 315 deg	90 mph 315 degree with No Ice
0.9D + 1.6W Normal	90 mph Normal with No Ice (Reduced DL)
0.9D + 1.6W 45 deg	90 mph 45 deg with No Ice (Reduced DL)
0.9D + 1.6W 90 deg	90 mph 90 deg with No Ice (Reduced DL)
0.9D + 1.6W 135 deg	90 mph 135 deg with No Ice (Reduced DL)
0.9D + 1.6W 180 deg	90 mph 180 deg with No Ice (Reduced DL)
0.9D + 1.6W 225 deg	90 mph 225 deg with No Ice (Reduced DL)
0.9D + 1.6W 270 deg	90 mph 270 deg with No Ice (Reduced DL)
0.9D + 1.6W 315 deg	90 mph 315 deg with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi Normal	50 mph Normal with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 45 deg	50 mph 45 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 90 deg	50 mph 90 deg with 0.75 in Radial Ice

Site Number:	88166
Site Name:	SOUTH SALEM NY, NY
Customer:	VERIZON WIRELESS

Code:	ANSI/TIA-222-G
Engineering Number:	12936321_C3_01

6/13/2019 1:24:25 PM

Analysis Parameters

1.20 + 1.0Di + 1.0Wi 135 deg	50 mph 135 deg with 0.75 in Radial ice
1.2D + 1.0Di + 1.0Wi 180 deg	50 mph 180 deg with 0.75 in Radial Ice
1.2D + 1.0DI + 1.0Wi 225 deg	50 mph 225 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 270 deg	50 mph 270 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 315 deg	50 mph 315 deg with 0.75 in Radial Ice
(1.2 + 0.2Sds) * DL + E Normal	Seismic Normal
(1.2 + 0.2Sds) * DL + E 45 deg	Seismic 45 deg
(1.2 + 0.2Sds) * DL + E 90 deg	Seismic 90 deg
(1.2 + 0.2Sds) * DL + E 135 deg	Seismic 135 deg
(1.2 + 0.2Sds) * DL + E 180 deg	Seismic 180 deg
(1.2 + 0.2Sds) * DL + E 225 deg	Seismic 225 deg
(1.2 + 0.2Sds) * DL + E 270 deg	Seismic 270 deg
(1.2 + 0.2Sds) * DL + E 315 deg	Seismic 315 deg
(0.9 - 0.2Sds) * DL + E Normal	Seismic (Reduced DL) Normai
(0.9 - 0.2Sds) * DL + E 45 deg	Seismic (Reduced DL) 45 deg
(0.9 - 0.2Sds) * DL + E 90 deg	Seismic (Reduced DL) 90 deg
(0.9 - 0.2Sds) * DL + E 135 deg	Seismic (Reduced DL) 135 deg
(0.9 - 0.2Sds) * DL + E 180 deg	Seismic (Reduced DL) 180 deg
(0.9 - 0.2Sds) * DL + E 225 deg	Seismic (Reduced DL) 225 deg
(0.9 - 0.2Sds) * DL + E 270 deg	Seismic (Reduced DL) 270 deg
(0.9 - 0.2Sds) * DL + E 315 deg	Seismic (Reduced DL) 315 deg
1.0D + 1.0W Service Normal	Serviceability - 60 mph Wind Normal
1.0D + 1.0W Service 45 deg	Serviceability - 60 mph Wind 45 deg
1.0D + 1.0W Service 90 deg	Serviceability - 60 mph Wind 90 deg
1.0D + 1.0W Service 135 deg	Serviceability - 60 mph Wind 135 deg
1.0D + 1.0W Service 180 deg	Serviceability - 60 mph Wind 180 deg
1.0D + 1.0W Service 225 deg	Serviceability - 60 mph Wind 225 deg
1.0D + 1.0W Service 270 deg	Serviceability - 60 mph Wind 270 deg
1.0D + 1.0W Service 315 deg	Serviceability - 60 mph Wind 315 deg

Site Number:	88166	Code:	ANSI/TIA-222-G	2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:25 PM
Customer:	VERIZON WIRELESS			

Tower Loading

Discrete Appurtenance Properties 1.20 + 1.6W

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	К,	Orient. Factor	Vert. Ecc.(ft)	M a (lb-ft)	Q, (psf)	F _a (WL) (lb)	P_(DL) (lb)
132.0 Generic 12' Omni	1	40	3.6	12.0	3.0	3.0	0.75	1.00	0.0	0.0	21.06	77	48
128.0 Alcatel-Lucent B13	3	58	2.1	1.8	12.0	8.9	0.75	0.67	0.0	0.0	21.02	92	20
128.0 Commscope JAHH-	6	61	9.1	6.0	13.8	8.2	0.75	0.69	0.0	0.0	21.02	809	43
128.0 Commscope SBNHH-	- 3	51	8.2	6.1	11.9	7.1	0.75	0.69	0.0	0.0	21.02	363	18
128.0 Nokia AHCA AirScale	3	35	1.3	1,1	11.6	6.5	0.75	0.50	0.0	0.0	21.02	41	12
128.0 Nokia AHFIC	3	79	2.2	1.8	12.1	7.1	0.75	0.67	0.0	0.0	21.02	96	28
128.0 Raycap RxxDC-3315-	3	21	2.5	1.6	15.7	10.3	0.75	0.67	0.0	0.0	21.02	108	7
125.0 20' Pipe	1	100	3.4	20.0	2.5	2.5	1.00	1.00	0.0	0.0	21.00	97	12
125.0 Decibel DB844H90E-	12	14	3.6	4.0	6.5	8.0	0.75	0.73	0.0	0.0	21.00	677	20
125.0 Heavy Platform with	- T	6000	80.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	21.00	2285	720
125.0 Pole Mount	6	30	0.9	5.5	2.5	2.5	1.00	1.00	-3.0	482.7	20.98	161	21
125.0 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	21.00		1080
122.0 Andrew	3	11	0.4	0.5	3.0	7.7	0.75	0.50	0.0	0.0	20.98		4
122.0 Ericsson KRY 112	3	15	0.6	0.9	6.1	3.9	0.75	0.50	0.0	0.0	20.98	18	5
122.0 Ericsson Radio 4449	3	74	1.6	1.2	13.2	9.3	0.75	0.50	0.0	0.0	20.98	53	26
122.0 RFS APX16DWV-	3	41	6.6	4.7	13.3	3.1	0.75	0.60	0.0	0.0	20.98	254	14
122.0 RFS	3	128	20.2	8.0	24.0	8.7	0.75	0.63	0.0	0.0	20.98	819	46
113.0 Heavy Sector Frame	3	500	29.3	0.0	0.0	0.0	0.75	0.67	0.0	0.0	20.93		1800
112.5 Catwalk	1	5000	65.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	20.93		6000
	3		2.4										
111.0 Alcatel-Lucent	-	60	2.4	2.1	11.1	11.4	0.80	0.67	0.0	0.0	20.92		21
111.0 Alcatel-Lucent 800	3	62		1.6	13.0	15.2	0.80	0.67	0.0	0.0	20.92		222
111.0 Alcatel-Lucent TD-	3 3	70	4.1 0.1	2.2	18.6	6.7	0.80	0.61	0.0	0.0	20.92		25
111.0 RFS ACU-A20-N	-	1	8.0	0.3	2.0	3.5	0.80	0.50	0.0	0.0	20.92		4
111.0 RFS APXVSPP18-C	3	57		6.0	11.8	7.0	0.80	0.69	0.0	0.0	20.92		20
111.0 RFS APXVTM14-ALU-		56	6.3	4.7	12.6	6.3	0.80	0.66	0.0	0.0		286	202
104.0 Alcatel-Lucent 9442	3	49	2.5	2.1	12.0	9.0	0.80	0.67	0.0	0.0	20.89	114	176
104.0 Alcatel-Lucent B25	3	53	2.1	1.8	12.0	7.2	0.60	0.67	0.0	0.0	20.89	97	191
104.0 Alcatel-Lucent	3	70	3.2	2.6	12.0	8.7	0.80	0.72	0.0	0.0	20.89	155	252
104.0 Commscope NNHH-	9	9 9	17.1	8.0	19.6	7.8	0.80	0.64	0.0	0.0	20.89	2235	1071
104.0 Nokia Airscale Dual	3	77	2.2	1.8	12.1	7.0	0.80	0.67	0.0	0.0	20.89	102	271
104.0 Nokia AirScale RRH	3	35	1.3	1.1	11.6	6.5	0.80	0.50	0.0	0.0	20.89	44	127
104.0 Raycap DC6-48-60-	1	32	1.5	2.0	11.0	11.0	0.80	1.00	0.0	0.0	20.89	33	38
104.0 Raycap DC6-48-60-	1	20	1.3	2.0	9.7	9.7	0.80	1.00	0.0	0.0	20.89	29	24
104.0 Sector Frame Sabre	3	530	17.5	0.0	0.0	0.0	0.75	0.67	0.0	0.0	20.89	750	1908
35.00 Generic 5" x 3" x 2"	1	2	0.1	0.4	3.2	1.9	1.00	1.00	0.0	0.0	20.90	4	2
85.00 Generic Flat Side	1	188	6.3	0.0	0.0	0.0	1.00	0.67	0.0	0.0	20.90	120	22!
85.00 Generic Low Noise	1	2	0.2	0.4	4.0	2.0	1.00	1.00	0.0	0.0	20.90	5	
5.00 Procom CXL 900-	1	2	0.1	2.3	0.6	0.6	1.00	1.00	0.0	0.0	20.90	4	2
6.00 Rest Platform	1	500	15.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	20.93	427	600
5.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	20.93	26	12
5.00 Stand-Off	1	100	3.5	0.0	0.0	0.0	1.00	0.67	0.0	0.0	20.93	67	120
56.00 Stand-Off	i	100	3.5	0.0	0.0	0.0	1.00	0.67	0.0	0.0	21.02	67	120
53.00 Generic GPS	4	10	0.9	1.0	9.0	6.0	0.80	0.50	3.0	123.5	21.02	41	48
5.00 Rest Platform	1	500	15.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	21.46	438	600
STATISTICS FIGURATION		000	10.0	0.0	0.0	0.0	1.VV	1.00	0.0	0.0	LINTO	440	401

Discrete Appurtenance Properties 0.90 + 1.6W

Elevation Description	Qty	Wt.	EPA	Length	Width	Depth	К,	Orient.	Vert.	M.	Q, 1	F ₁ (WL) F	'a(DL)
(ft)		(lb)	(sf)	(ft)	(in)	(in)		Factor	Ecc.(ft)	(lb-ft)	(psf)	(ib)	(ib)
132.0 Generic 12' Omni	1	40	3.6	12.0	3.0	3.0	0.75	1.00	0.0	0.0	21.05	77	36
128.0 Alcatel-Lucent B13	3	58	2.1	1.8	12.0	8.9	0.75	0.67	0.0	0.0	21.02	92	156

				www.			-111 4 Well 1 1 1	1 - 30 Birds - 42						2.
Site Name: SOUTH SALEM N	Y, NY			Engineer	ing Num	ber:	1293632	1_C3_01				6/13/201	9 1:24:25 PN	4
Customer: VERIZON WIREL	ESS													
				To	wer L	oadin	g							
128.0 Commscope JAHH-	6	61	9.1	6.0	13.8	8.2	0.75	0.69	0.0	0.0	21.02	809	327	
128.0 Commscope SBNHH-		51	8.2	6.1	11.9	7.1	0.75	0.69	0.0	0.0	21.02	363	137	
128.0 Nokia AHCA AirScale	ž	35	1.3	1.1	11.6	6.5	0.75	0.50	0.0	0.0	21.02	41	95	
128.0 Nokia AHFIC	3	79	2.2	1.8	12.1	7.1	0.75	0.67	0.0	0.0	21.02	96	214	
128.0 Raycap RxxDC-3315-	3	21	2.5	1.6	15.7	10.3	0.75	0.67	0.0	0.0	21.02	108	58	
125.0 20' Pipe	1	100	3.4	20.0	2.5	2.5	1.00	1.00	0.0	0.0	21.00	97	90	
125.0 Decibel DB844H90E-	12	14	3.6	4.0	6.5	8.0	0.75	0.73	0.0	0.0	21.00	677	151	
125.0 Heavy Platform with	1	6000	80.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	21.00	2285	5400	
125.0 Pole Mount	6	30	0.9	5.5	2.5	2.5	1.00	1.00	-3.0	482.7	20.98	161	162	
125.0 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	21.00	620	810	
122.0 Andrew	3	11	0.4	0.5	3.0	7.7	0.75	0.50	0.0	0.0	20.98	13	30	
122.0 Ericsson KRY 112	3	15	0.6	0.9	6.1	3.9	0.75	0.50	0.0	0.0	20.98	18	42	
122.0 Ericsson Radio 4449	3	74	1.6	1.2	13.2	9.3	0.75	0.50	0.0	0.0	20.98	53	200	
122.0 RFS APX16DWV-	3	41	6.6	4.7	13.3	3.1	0.75	0.60	0.0	0.0	20.98	254	110	
122.0 RFS	3	128	20.2	8.0	24.0	8.7	0.75	0.63	0.0	0.0	20.98	819	345	
113.0 Heavy Sector Frame	3	500	29.3	0.0	0.0	0.0	0.75	0.67	0.0	0.0	20.93	1257	1350	
112.5 Catwalk	1	5000	65.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	20.92	1850	4500	
111.0 Alcatel-Lucent	3	60	2.4	2.1	11.1	11.4	0.80	0.67	0.0	0.0	20.92	108	162	
111.0 Alcatel-Lucent 800	3	62	2.5	1.6	13.0	15.2	0.80	0.67	0.0	0.0	20.92	114	167	
111.0 Alcatel-Lucent TD-	3	70	4.1	2.2	18.6	6.7	0.80	0.61	0.0	0.0	20.92	169	189	
111.0 RFS ACU-A20-N	3	1	0.1	0.3	2.0	3.5	0.80	0.50	0.0	0.0	20.92	4	3	
111.0 RFS APXVSPP18-C	3	57	8.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	20.92	378	154	
111.0 RFS APXVTM14-ALU-	3	56	6.3	4.7	12.6	6.3	0.80	0.66	0.0	0.0	20.92	286	152	

Code:

ANSI/TIA-222-G 0 2007 - 2019 by ATC IP LLC. All rights reserved.

Alcatel-Lucent 800	3	62	2,5	1.6	13.0	15.2	0.80	0.67	0.0	0.0	20.92	114	167	
Alcatel-Lucent TD-	3	70	4.1	2.2	18.6	6.7	0.80	0.61	0.0	0.0	20.92	169	189	
RFS ACU-A20-N	3	1	0.1	0.3	2.0	3.5	0.80	0.50	0.0	0.0	20.92	4	3	
RFS APXVSPP18-C	3	57	8.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	20.92	378	154	
RFS APXVTM14-ALU	- 3	56	6.3	4.7	12.6	6.3	0.80	0.66	0.0	0.0	20.92	286	152	
Alcatel-Lucent 9442	3	49	2.5	2.1	12.0	9.0	0.80	0.67	0.0	0.0	20.89	114	132	
Alcatel-Lucent B25	3	53	2.1	1.8	12.0	7.2	0.80	0.67	0.0	0.0	20.89	97	143	
Alcatel-Lucent	3	70	3.2	2.6	12.0	8.7	0.80	0.72	0.0	0.0	20.89	155	189	
Commscope NNHH-	9	99	17.1	8.0	19.6	7.8	0.80	0.64	0.0	0.0	20.89	2235	804	
Nokia Airscale Dual	3	77	2.2	1.8	12.1	7.0	0.80	0.67	0.0	0.0	20,89	102	208	
Nokia AirScale RRH	3	35	1.3	1.1	11.6	6.5	0.80	0.50	0.0	0.0	20.89	- 44	95	
Raycap DC6-48-60-	1	32	1.5	2.0	11.0	11.0	0.80	1.00	0.0	0.0	20.89	33	29	
Raycap DC6-48-60-	1	20	1.3	2.0	9.7	9.7	0.80	1.00	0.0	0.0	20.89	29	18	
Sector Frame Sabre	3	530	17.5	0.0	0.0	0.0	0.75	0.67	0.0	0.0	20.89	750	1431	
Generic 5" x 3" x 2"	1	2	0.1	0.4	3.2	1.9	1.00	1.00	0.0	0.0	20.90	4	1	
Generic Flat Side	1	188	6.3	0.0	0.0	0.0	1.00	0.67	0.0	0.0	20.90	120	169	
Generic Low Noise	1	2	0.2	0.4	4.0	2.0	1.00	1.00	0.0	0.0	20.90	5	2	
Procom CXL 900-	1	2	0.1	2.3	0.6	0.6	1.00	1.00	0.0	0.0	20.90	4	1	
Rest Platform	1	500	15.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	20.93	427	450	
Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	20.93	26	9	
Stand-Off	1	100	3.5	0.0	0.0	0.0	1.00	0.67	0.0	0.0	20. 9 3	67	90	
Stand-Off	1	100	3.5	0.0	0.0	0.0	1.00	0.67	0.0	0.0	21.02	67	90	
Generic GPS	- 4	10		1.0	9.0	6.0	0.80	0.50	3.0	123.5	21.02	41	36	
Rest Platform	1	500	15.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	21.46	438	450	
Totals	124	21541	885.2									15505	19387	
	RFS ACU-A20-N RFS APXVSPP18-C RFS APXVSPP18-C RFS APXVTM14-ALU Alcatel-Lucent 9442 Alcatel-Lucent B25 Alcatel-Lucent Commscope NNHH- Nokia Airscale Dual Nokia Airscale Dual Nokia Airscale RRH Raycap DC6-48-60- Raycap DC6-48-60- Sector Frame Sabre Generic 5" x 3" x 2" Generic Flat Side Generic Cars Procom CXL 900- Rest Platform Generic GPS Stand-Off Generic GPS Rest Platform	Alcatel-Lucent TD-3RFS ACU-A20-N3RFS APXVSPP18-C3Alcatel-Lucent 94423Alcatel-Lucent 94423Alcatel-Lucent B253Alcatel-Lucent B253Alcatel-Lucent B253Alcatel-Lucent B253Alcatel-Lucent B253Alcatel-Lucent B253Alcatel-Lucent B253Alcatel-Lucent B253Nokia Airscale Dual 33Nokia Airscale RRH 33Raycap DC6-48-60-1Sector Frame Sabre 33Generic 5" x 3" x 2"1Generic Flat Side 11Generic Low Noise 11Procom CXL 900-1Rest Platform 11Generic GPS 11Stand-Off 11Generic GPS 44Rest Platform 11	Alcatel-Lucent TD- 3 70 RFS ACU-A20-N 3 1 RFS APXVSPP18-C 3 57 RFS APXVTM14-ALU- 3 56 Alcatel-Lucent 9442 3 49 Alcatel-Lucent B25 3 53 Alcatel-Lucent B25 3 53 Alcatel-Lucent B25 3 53 Alcatel-Lucent B25 3 53 Alcatel-Lucent 3 70 70 Commscope NNHH- 99 99 Nokia Airscale Dual 3 77 Nokia Airscale RRH 3 35 Raycap DC6-48-60- 1 32 Raycap DC6-48-60- 1 20 Sector Frame Sabre 3 530 6eneric 5" x 3" x 2" 1 Generic Flat Side 1 188 6eneric Low Noise 2 Procom CXL 900- 2 2 Rest Platform 500 Generic GPS 1 10 3 10 Stand-Off 1 100 6eneric GPS 10 Rest Platform 1 500 6eneric GPS 10	Alcatel-Lucent TD-3704.1RFS ACU-A20-N310.1RFS APXVSPP18-C3578.0RFS APXVTM14-ALU-3566.3Alcatel-Lucent 94423492.5Alcatel-Lucent B253532.1Alcatel-Lucent B253532.1Alcatel-Lucent B253532.1Alcatel-Lucent B253532.1Nokia Airscale Dual3772.2Nokia Airscale RRH3351.3Raycap DC6-48-60-1321.5Raycap DC6-48-60-1201.3Sector Frame Sabre353017.5Generic 5" x 3" x 2"120.1Generic Low Noise120.2Procom CXL 900-120.1Rest Platform150015.0Generic GPS11003.5Stand-Off11003.5Generic GPS4100.9Rest Platform150015.0Rest Platform150015.0Rest Platform150015.0	Alcatel-Lucent TD-3704.12.2RFS ACU-A20-N310.10.3RFS APXVSPP18-C3578.06.0RFS APXVTM14-ALU-3566.34.7Alcatel-Lucent 94423492.52.1Alcatel-Lucent B253532.11.8Alcatel-Lucent B253532.11.8Alcatel-Lucent B253703.22.6Commscope NNHH-99917.18.0Nokia Airscale Dual3772.21.8Nokia Airscale RRH3351.31.1Raycap DC6-48-60-1321.52.0Raycap DC6-48-60-1321.52.0Sector Frame Sabre353017.50.0Generic 5" x 3" x 2"120.10.4Generic Low Noise120.20.4Procom CXL 900-120.12.3Rest Platform150015.00.0Generic GPS11003.50.0Stand-Off11003.50.0Generic GPS4100.91.0Rest Platform150015.00.0Rest Platform150015.00.0	Alcatel-Lucent TD- RFS ACU-A20-N310.10.32.0RFS ACU-A20-N310.10.32.0RFS APXVSPP18-C3578.06.011.8RFS APXVTM14-ALU-3566.34.712.6Alcatel-Lucent 94423492.52.112.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Alcatel-Lucent B253532.11.812.0Nokia Airscale Dual3772.21.812.1Nokia Airscale RRH3351.31.111.6Raycap DC6-48-60-1321.52.011.0Raycap DC6-48-60-1201.32.09.7Sector Frame Sabre353017.50.00.0Generic S''x 3'' x 2''120.10.43.2Generic Low Noise120.12.30.6Rest Platform150015.00.00.0Generic GPS1103.50.	Alcatel-Lucent TD- RFS ACU-A20-N3704.12.218.66.7RFS ACU-A20-N310.10.32.03.5RFS APXVSPP18-C3578.06.011.87.0RFS APXVTM14-ALU-3566.34.712.66.3Alcatel-Lucent 94423492.52.112.09.0Alcatel-Lucent B253532.11.812.07.2Alcatel-Lucent B253532.11.812.07.2Alcatel-Lucent B3703.22.612.08.7Commscope NNHH-99917.18.019.67.8Nokia Airscale Dual3772.21.812.17.0Nokia Airscale RRH3351.31.111.66.5Raycap DC6-48-60-1321.52.011.011.0Raycap DC6-48-60-1201.32.09.79.7Sector Frame Sabre353017.50.00.00.0Generic Flat Side11886.30.00.00.0Generic Low Noise120.12.30.60.6Rest Platform150015.00.00.00.0Generic GPS11003.50.00.00.0Generic GPS4100.91.09.06.0Rest Platform1500 <td< td=""><td>Alcatel-Lucent TD- RFS ACU-A20-N3704.12.218.66.70.80RFS ACU-A20-N310.10.32.03.50.80RFS APXVSPP18-C3578.06.011.87.00.80RFS APXVTM14-ALU-3566.34.712.66.30.80Alcatel-Lucent 94423492.52.112.09.00.80Alcatel-Lucent B253532.11.812.07.20.80Alcatel-Lucent B253532.11.812.07.20.80Alcatel-Lucent B253532.11.812.07.20.80Alcatel-Lucent B253532.11.812.07.20.80Nokia Airscale Dual3772.21.812.17.00.80Nokia Airscale RRH3351.31.111.66.50.80Raycap DC6-48-60-1321.52.011.011.00.80Raycap DC6-48-60-1201.32.09.79.70.80Sector Frame Sabre353017.50.00.00.01.00Generic Flat Side11886.30.00.01.00Generic Low Noise120.12.30.60.61.00Rest Platform150015.00.00.00.01.00Generic GPS<t< td=""><td>Alcatel-Lucent TD- RFS ACU-A20-N310.10.32.03.50.800.61RFS ACU-A20-N310.10.32.03.50.800.50RFS APXVSPP18-C3578.06.011.87.00.800.69RFS APXVTM14-ALU-3566.34.712.66.30.800.66Alcatel-Lucent 94423492.52.112.09.00.800.67Alcatel-Lucent B253532.11.812.07.20.800.67Alcatel-Lucent3703.22.612.08.70.800.67Alcatel-Lucent3703.22.612.08.70.800.67Alcatel-Lucent3772.21.812.17.00.800.67Nokia Airscale Dual3772.21.812.17.00.800.67Nokia Airscale RRH3351.31.111.66.50.800.50Raycap DC6-48-60-1201.32.09.79.70.801.00Raycap DC6-48-60-1201.32.09.79.70.801.00Sector Frame Sabre353017.50.00.00.00.00.67Generic S''x 3'' x 2''120.10.43.21.91.001.00Generic CPS11001.500</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.60 0.0 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 RFS APXVTM14-ALU- 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.1 7.0 0.80 0.67 0.0 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.67 0.0 Raycap D</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 0.0 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.50 0.0 0.0 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 Alcatel-Lucent 3 70 3.2 2.6 12.0 8.7 0.80 0.67 0.0 0.0 Alcatel-Lucent 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 0.0 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 0.0 Raycap DC6-48-60- 1 <td< td=""><td>Alcatel-Lucent TD- RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.66 0.0 0.0 20.92 RFS APXVTM14-ALU-3 56 6.3 4.7 12.6 6.3 0.80 0.67 0.0 0.0 20.92 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 Alcatel-Lucent B25 3 53 2.1 18.0 19.6 7.8 0.80 0.64 0.0 0.0 20.89 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.60</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 RFS APXVFP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 RFS APXVFP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 378 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 1.1 18.0 19.6 7.8 0.80 0.67 0.0 0.0 20.89 2235 Nokia Airscale Dual 3 77 2.2 <td< td=""><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 169 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 3 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 154 RFS APXVSP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 286 152 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 143 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 174 132 Alcatel-Lucent B25 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 102</td></td<></td></td<></td></t<></td></td<>	Alcatel-Lucent TD- RFS ACU-A20-N3704.12.218.66.70.80RFS ACU-A20-N310.10.32.03.50.80RFS APXVSPP18-C3578.06.011.87.00.80RFS APXVTM14-ALU-3566.34.712.66.30.80Alcatel-Lucent 94423492.52.112.09.00.80Alcatel-Lucent B253532.11.812.07.20.80Alcatel-Lucent B253532.11.812.07.20.80Alcatel-Lucent B253532.11.812.07.20.80Alcatel-Lucent B253532.11.812.07.20.80Nokia Airscale Dual3772.21.812.17.00.80Nokia Airscale RRH3351.31.111.66.50.80Raycap DC6-48-60-1321.52.011.011.00.80Raycap DC6-48-60-1201.32.09.79.70.80Sector Frame Sabre353017.50.00.00.01.00Generic Flat Side11886.30.00.01.00Generic Low Noise120.12.30.60.61.00Rest Platform150015.00.00.00.01.00Generic GPS <t< td=""><td>Alcatel-Lucent TD- RFS ACU-A20-N310.10.32.03.50.800.61RFS ACU-A20-N310.10.32.03.50.800.50RFS APXVSPP18-C3578.06.011.87.00.800.69RFS APXVTM14-ALU-3566.34.712.66.30.800.66Alcatel-Lucent 94423492.52.112.09.00.800.67Alcatel-Lucent B253532.11.812.07.20.800.67Alcatel-Lucent3703.22.612.08.70.800.67Alcatel-Lucent3703.22.612.08.70.800.67Alcatel-Lucent3772.21.812.17.00.800.67Nokia Airscale Dual3772.21.812.17.00.800.67Nokia Airscale RRH3351.31.111.66.50.800.50Raycap DC6-48-60-1201.32.09.79.70.801.00Raycap DC6-48-60-1201.32.09.79.70.801.00Sector Frame Sabre353017.50.00.00.00.00.67Generic S''x 3'' x 2''120.10.43.21.91.001.00Generic CPS11001.500</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.60 0.0 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 RFS APXVTM14-ALU- 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.1 7.0 0.80 0.67 0.0 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.67 0.0 Raycap D</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 0.0 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.50 0.0 0.0 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 Alcatel-Lucent 3 70 3.2 2.6 12.0 8.7 0.80 0.67 0.0 0.0 Alcatel-Lucent 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 0.0 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 0.0 Raycap DC6-48-60- 1 <td< td=""><td>Alcatel-Lucent TD- RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.66 0.0 0.0 20.92 RFS APXVTM14-ALU-3 56 6.3 4.7 12.6 6.3 0.80 0.67 0.0 0.0 20.92 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 Alcatel-Lucent B25 3 53 2.1 18.0 19.6 7.8 0.80 0.64 0.0 0.0 20.89 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.60</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 RFS APXVFP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 RFS APXVFP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 378 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 1.1 18.0 19.6 7.8 0.80 0.67 0.0 0.0 20.89 2235 Nokia Airscale Dual 3 77 2.2 <td< td=""><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 169 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 3 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 154 RFS APXVSP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 286 152 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 143 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 174 132 Alcatel-Lucent B25 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 102</td></td<></td></td<></td></t<>	Alcatel-Lucent TD- RFS ACU-A20-N310.10.32.03.50.800.61RFS ACU-A20-N310.10.32.03.50.800.50RFS APXVSPP18-C3578.06.011.87.00.800.69RFS APXVTM14-ALU-3566.34.712.66.30.800.66Alcatel-Lucent 94423492.52.112.09.00.800.67Alcatel-Lucent B253532.11.812.07.20.800.67Alcatel-Lucent3703.22.612.08.70.800.67Alcatel-Lucent3703.22.612.08.70.800.67Alcatel-Lucent3772.21.812.17.00.800.67Nokia Airscale Dual3772.21.812.17.00.800.67Nokia Airscale RRH3351.31.111.66.50.800.50Raycap DC6-48-60-1201.32.09.79.70.801.00Raycap DC6-48-60-1201.32.09.79.70.801.00Sector Frame Sabre353017.50.00.00.00.00.67Generic S''x 3'' x 2''120.10.43.21.91.001.00Generic CPS11001.500	Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.60 0.0 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 RFS APXVTM14-ALU- 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.1 7.0 0.80 0.67 0.0 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.67 0.0 Raycap D	Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 0.0 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.50 0.0 0.0 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 Alcatel-Lucent 3 70 3.2 2.6 12.0 8.7 0.80 0.67 0.0 0.0 Alcatel-Lucent 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 0.0 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 0.0 Raycap DC6-48-60- 1 <td< td=""><td>Alcatel-Lucent TD- RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.66 0.0 0.0 20.92 RFS APXVTM14-ALU-3 56 6.3 4.7 12.6 6.3 0.80 0.67 0.0 0.0 20.92 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 Alcatel-Lucent B25 3 53 2.1 18.0 19.6 7.8 0.80 0.64 0.0 0.0 20.89 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.60</td><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 RFS APXVFP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 RFS APXVFP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 378 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 1.1 18.0 19.6 7.8 0.80 0.67 0.0 0.0 20.89 2235 Nokia Airscale Dual 3 77 2.2 <td< td=""><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 169 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 3 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 154 RFS APXVSP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 286 152 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 143 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 174 132 Alcatel-Lucent B25 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 102</td></td<></td></td<>	Alcatel-Lucent TD- RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 0.0 20.92 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.66 0.0 0.0 20.92 RFS APXVTM14-ALU-3 56 6.3 4.7 12.6 6.3 0.80 0.67 0.0 0.0 20.92 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 Alcatel-Lucent B25 3 53 2.1 18.0 19.6 7.8 0.80 0.64 0.0 0.0 20.89 Nokia Airscale Dual 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 Nokia Airscale RRH 3 35 1.3 1.1 11.6 6.5 0.80 0.60	Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 RFS APXVFP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 RFS APXVFP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 378 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 97 Alcatel-Lucent B25 3 53 1.1 18.0 19.6 7.8 0.80 0.67 0.0 0.0 20.89 2235 Nokia Airscale Dual 3 77 2.2 <td< td=""><td>Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 169 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 3 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 154 RFS APXVSP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 286 152 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 143 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 174 132 Alcatel-Lucent B25 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 102</td></td<>	Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.61 0.0 20.92 169 189 RFS ACU-A20-N 3 1 0.1 0.3 2.0 3.5 0.80 0.61 0.0 20.92 4 3 RFS APXVSPP18-C 3 57 8.0 6.0 11.8 7.0 0.80 0.69 0.0 0.0 20.92 378 154 RFS APXVSP18-C 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 20.92 286 152 Alcatel-Lucent 9442 3 49 2.5 2.1 12.0 9.0 0.80 0.67 0.0 0.0 20.89 97 143 Alcatel-Lucent B25 3 53 2.1 1.8 12.0 7.2 0.80 0.67 0.0 0.0 20.89 174 132 Alcatel-Lucent B25 3 77 2.2 1.8 12.1 7.0 0.80 0.67 0.0 0.0 20.89 102

Discrete Appurtenance Properties 1.2D + 1.0Di + 1.0Wi

Site Number: 88166

Elevation Description (ft)	Qty	ice Wt (lb)	lce EPA (sf)	Length (ft)	Width (in)	Depth (in)	к,	Orient. Factor	Vert. Ecc.(ft)	M " (lb-ft)	Q, (psf)	F, (WL) ((ib)	P_(DL) (ib)
132.0 Generic 12' Omni	1	133	8.0	12.0	3.0	3.0	0.75	1.00	0.0	0.0	6.50	33	141
128.0 Alcatel-Lucent B13	3	129	3.2	1.8	12.0	8.9	0.75	0.67	0.0	0.0	6.49	26	421
128.0 Commscope JAHH-	6	268	12.0	6.0	13.8	8.2	0.75	0.69	0.0	0.0	6.49	205	1683
128.0 Commscope SBNHH-	3	231	11.1	6.1	11.9	7.1	0.75	0.69	0.0	0.0	6.49	95	723
128.0 Nokia AHCA AirScale	3	76	2.1	1.1	11.6	6.5	0.75	0.50	0.0	0.0	6.49	13	248
128.0 Nokia AHFIC	3	144	3.3	1.8	12.1	7.1	0.75	0.67	0.0	0.0	6.49	27	478
128.0 Raycap RxxDC-3315-	3	103	3.6	1.6	15.7	10.3	0.75	0.67	0.0	0.0	6.49	30	322
125.0 20' Pipe	1	243	5.8	20.0	2.5	2.5	1.00	1.00	0.0	0.0	6.48	32	263

Site N Custo		a			Engineer	ing Num	ber:	1293632	1_C3_01				6/13/201	9 1:24:25 F	M
					To	wer L	oadin	g							
125.0	Decibel DB844H90E-	12	128	3.9	4.0	6.5	8.0	0.75	0.73	0.0	0.0	6.48	143	1571	
125.0	Heavy Platform with	1	10421	116.1	0.0	0.0	0.0	1.00	1.00	0.0	0.0	6.48	639	11621	
	Pole Mount	6	73	1.6	5.5	2.5	2.5	1.00	1.00	-3.0	159.7	6.47	53	474	
125.0	Round Sector Frame	3	678	31.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	6.48	261	2213	
	Andrew	3	24	0.8	0.5	3.0	7.7	0.75	0.50	0.0	0.0	6.47	5	77	
122.0	Ericsson KRY 112	3	34	1.1	0.9	6.1	3.9	0.75	0.50	0.0	0.0	6.47	7	110	
122.0	Ericsson Radio 4449	3	131	2.5	1.2	13.2	9.3	0.75	0.50	0.0	0.0	6.47	16	439	
122.0	RFS APX16DWV-	3	161	8.8	4.7	13.3	3.1	0.75	0.60	0.0	0.0	6.47	65	506	
122.0	RFS	3	531	24.0	8.0	24.0	8.7	0.75	0.63	0.0	0.0	6.47	188	1670	
113.0	Heavy Sector Frame	3	1065	47.1	0.0	0.0	0.0	0.75	0.67	0.0	0.0	6.46	390	3494	
112.5	Catwalk	1	12148	111.5	0.0	0.0	0.0	1.00	1.00	0.0	0.0	6.46	612	13148	
111.0	Alcatel-Lucent	3	145	3.5	2.1	11.1	11.4	0.80	0.67	0.0	0.0	6.46	31	472	
111.0	Alcatel-Lucent 800	3	155	3.6	1.6	13.0	15.2	0.80	0.67	0.0	0.0	6.46	31	501	
	Alcatel-Lucent TD-	3	167	5.4	2.2	18.6	6.7	0.80	0.61	0.0	0.0	6.46	43	543	
	RFS ACU-A20-N	3	5	0.4	0.3	2.0	3.5	0.80	0.50	0.0	0.0	6.46	3	17	
	RFS APXVSPP18-C	3	234	10.9	6.0	11.8	7.0	0.80	0.69	0.0	0.0	6.46	99	736	
111.0	RFS APXVTM14-ALU-	3	197	8.6	4.7	12.6	6.3	0.80	0.66	0.0	0.0	6.46	75	626	
	Alcatel-Lucent 9442	3	128	3.6	2.1	12.0	9.0	0.80	0.67	0.0	0.0	6.45	32	413	
104.0	Alcatel-Lucent B25	3	115	3.1	1.8	12.0	7.2	0.80	0.67	0.0	0.0	6.45	28	377	
	Alcatel-Lucent	3	164	4.5	2.6	12.0	8.7	0.80	0.72	0.0	0.0	6.45	43	533	
104.0	Commscope NNHH-	9	436	20.9	8.0	19.6	7.8	0.80	0.64	0.0	0.0	6.45	527	4101	
	Nokia Airscale Dual	3	141	3.3	1.8	12.1	7.0	0.80	0.67	0.0	0.0	6.45	29	469	
	Nokia AirScale RRH	3	76	2.1	1.1	11.6	6.5	0.80	0.50	0.0	0.0	6.45	- 14	248	
	Raycap DC6-48-60-	1	95	2.2	2.0	11.0	11.0	0.80	1.00	0.0	0.0	6.45	10	101	
	Raycap DC6-48-60-	1	74	1.9	2.0	9.7	9.7	0.80	1.00	0.0	0.0	6.45	8	78	
	Sector Frame Sabre	3	534	17.6	0.0	0.0	0.0	0.75	0.67	0.0	0.0	6.45	146	1919	
	Generic 5" x 3" x 2"	1	7	0.4	0.4	3.2	1.9	1.00	1.00	0.0	0.0	6.45	2	7	
	Generic Flat Side	1	324	9.5	0.0	0.0	0.0	1.00	0.67	0.0	0.0	6.45	35	362	
	Generic Low Noise	1	8	0.5	0.4	4.0	2.0	1.00	1.00	0.0	0.0	6.45	3	8	
	Procom CXL 900-	1	7	0.9	2.3	0.6	0.6	1.00	1.00	0.0	0.0	6.45	5	7	
	Rest Platform	1	1215	25.7	0.0	0.0	0.0	1.00	1.00	0.0	0.0	6.46	141	1315	
	Generic GPS	1	40	1.6	1.0	9.0	6.0	1.00	1.00	0.0	0.0	6.46	9	42	
	Stand-Off	1	150	5.4	0.0	0.0	0.0	1.00	0.67	0.0	0.0	6.46	20	170	
- FO 60	Official Off		450	E 4	n n	0.0	A A	4 66	0.07		~ ~	A 4A		4.72.0	

ANSI/TIA-222-G

Code:

4346 54269

20

14

142 1286

170

168

0.0 6.49

0.0 6.62

41.2 6.49

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Discrete Appurtenance Properties 1.0D + 1.0W Service

1

4

1

124

150

1186

40

49961 1259.1

5.4

1.6

25.3

Site Number: 88166

56.00 Stand-Off

53.00 Generic GPS

25.00 Rest Platform

Totals

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	к,	Orient. Factor	Vert. Ecc.(ft)	M., (lb-ft)	Q, (psf)	F _a (WL) (ib)	P_(DL) (lb)
132.0 Generic 12' Omni	1	40	3.6	12.0	3.0	3.0	0.75	1.00	0.0	0.0	9.36	21	40
128.0 Alcatel-Lucent B13	3	58	2.1	1.8	12.0	8.9	0.75	0.67	0.0	0.0	9.34	26	173
128.0 Commscope JAHH-	6	61	9.1	6.0	13.8	8.2	0.75	0.69	0.0	0.0	9.34	225	364
128.0 Commscope SBNHH-	3	51	8.2	6.1	11.9	7.1	0.75	0.69	0.0	0.0	9.34	101	152
128.0 Nokia AHCA AirScale	3	35	1.3	1.1	11.6	6.5	0.75	0.50	0.0	0.0	9.34	12	106
128.0 Nokia AHFIC	3	79	2.2	1.8	12.1	7.1	0.75	0.67	0.0	0.0	9.34	27	238
128.0 Raycap RxxDC-3315-	3	21	2.5	1.6	15.7	10.3	0.75	0.67	0.0	0.0	9.34	30	64
125.0 20' Pipe	1	100	3.4	20.0	2.5	2.5	1.00	1.00	0.0	0.0	9.33	27	100
125.0 Decibel DB844H90E-	12	14	3.6	4.0	6.5	8.0	0.75	0.73	0.0	0.0	9.33	188	168
125.0 Heavy Platform with	1	6000	80.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	9.33	635	6000
125.0 Pole Mount	6	30	0.9	5.5	2.5	2.5	1.00	1.00	-3.0	134.1	9.32	45	180
125.0 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	9.33	172	900
122.0 Andrew	3	11	0.4	0.5	3.0	7.7	0.75	0.50	0.0	0,0	9.32	4	33
122.0 Ericsson KRY 112	3	15	0.6	0.9	6.1	3.9	0.75	0.50	0.0	0.0	9.32	5	46

0.0 1.0 0.0 9.0

0.0 0.0 0.0 1.00

0.0 1.00

6.0 0.80

0.67

0.50

1.00

0.0

3.0

0.0

Site Number: 88166				Code:		,	ANSI/TIA	-222-G	0	2007 - 201	9 by ATC	IP LLC. A	Il rights reserved.
Site Name: SOUTH SALEM	INY, NY		Engineering Num			ber:	r: 12936321_G3_01					6/13/201	9 1:24:25 PM
Customer: VERIZON WIRE	LESS			-	-								
Tower Loading													
122.0 Ericsson Radio 4449	3	74	1.6	1.2	13.2	9.3	0.75	0.50	0.0	0.0	9.32	15	222
122.0 RFS APX16DWV-	3	41	6.6	4.7	13.3	3.1	0.75	0.60	0.0	0.0	9.32	71	122
122.0 RFS	3	128	20.2	8.0	24.0	8.7	0.75	0.63	0.0	0.0	9.32	227	384
113.0 Heavy Sector Frame	3	500	29.3	0.0	0.0	0.0	0.75	0.67	0.0	0.0	9.30	349	1500
112.5 Catwalk	1	5000	65.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	9.30	514	5000
111.0 Alcatel-Lucent	3	60	2.4	2.1	11.1	11.4	0.80	0.67	0.0	0.0	9.30	30	180
111.0 Alcatel-Lucent 800	3	62	2.5	1.6	13.0	15.2	0.80	0.67	0.0	0.0	9.30	32	185
111.0 Alcatel-Lucent TD-	3	70	4.1	2.2	18.6	6.7	0.80	0.61	0.0	0.0	9.30	47	210
111.0 RFS ACU-A20-N	3	-1	0.1	0.3	2.0	3.5	0.80	0.50	0.0	0.0	9.30	1	3
111.0 RFS APXVSPP18-C	3	57	8.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	9.30	105	171
111.0 RFS APXVTM14-ALU		56	6.3	4.7	12.6	6.3	0.80	0.66	0.0	0.0	9.30	79	169
104.0 Alcatel-Lucent 9442	3	49	2.5	2.1	12.0	9.0	0.80	0.67	0.0	0.0	9.29	32	147
104.0 Alcatel-Lucent B25	3	53	2.1	1.8	12.0	7.2	0.80	0.67	0.0	0.0	9.29	27	15 9
104.0 Alcatel-Lucent	3	70	3.2	2.6	12.0	8.7	0.80	0.72	0.0	0.0	9.29	43	210
104.0 Commscope NNHH-	9	99	17.1	8.0	19.6	7.8	0.80	0.64	0.0	0.0	9.29	621	893
104.0 Nokia Airscale Dual	3	77	2.2	1.8	12.1	7.0	0.80	0.67	0.0	0.0	9.29	28	232
104.0 Nokia AirScale RRH	3	35	1.3	1.1	11.6	6.5	0.80	0.50	0.0	0.0	9.29	12	106
104.0 Raycap DC6-48-60-	1	32	1.5	2.0	11.0	11.0	0.80	1.00	0.0	0.0	9.29	9	32
104.0 Raycap DC6-48-60-	1	20	1.3	2.0	9.7	9.7	0.80	1.00	0.0	0.0	9.29	8	20
104.0 Sector Frame Sabre	3	530	17.5	0.0	0.0	0.0	0.75	0.67	0.0	0.0	9.29	208	1590
85.00 Generic 5" x 3" x 2"	1	2	0.1	0.4	3.2	1.9	1.00	1.00	0.0	0.0	9.29	1	2
85.00 Generic Flat Side	1	188	6.3 0.2	0.0	0.0	0.0	1.00	0.67	0.0	0.0	9.29	33	188
85.00 Generic Low Noise	1	2		0.4	4.0	2.0	1.00	1.00	0.0	0.0	9.29	1	2
85.00 Procom CXL 900-	1	2	0.1	2.3	0.6	0.6	1.00	1.00	0.0	0.0	9.29	1	2
76.00 Rest Platform	1	500	15.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	9.30	119	500
75.00 Generic GPS 75.00 Stand-Off	1	10 100	0.9 3.5	1.0 0.0	9.0 0.0	6.0 0.0	1.00 1.00	1.00 0.67	0.0	0.0 0.0	9.30 9.30	7	10 100
		100	3.5						0.0			19	
56.00 Stand-Off 53.00 Generic GPS	4	100	3. 5 0.9	0.0 1.0	0.0 9.0	0.0 6.0	1.00 0.80	0.67	0.0	0.0	9.34 9.34	19 11	100 40
25.00 Rest Platform	4	500	15.0	1.0	9.0 0.0			0.50	3.0	34.3			
20.00 Rest Platform	1	500	12.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	9.54	122	500
Totals	124	21541	885.2									4307	21541

Site Number:	88166	Code:	ANSI/TIA-222-G	© 2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:25 PM
Customer:	VERIZON WIRELESS			

Tower Loading

Linear Appurtenance Properties

Elev From	Elev To			Width	Weight	Pct	Spread On	Bundling	Cluster	Out Of	Spacing	Orientation	n Ka
(ft)	(ft)	Description	Qty	(in)	(lb/ft)	In Block	Faces	Arrangement	Dia (in)	Zone	(in)	Factor	Override
0.00	128.0	1 5/8" Coax	12	1.98	0.82	75	Lin App	Block	0.00	N	1.00	1.00	0.00
0.00	128.0	1 5/8" Hybriflex	3	1.98	1.30	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	125.0	1 5/8" Coax	12	1.98	0.82	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	125.0	Climbing Ladder	1	2.00	6.90	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	125.0	Waveguide Ladder	1	2.00	6.00	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	125.0	Waveguide Ladder	2	2.00	6.00	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	122.0	1 5/8" Coax	18	1.98	0.82	67	Lin App	Block	0.00	N	1.00	1.00	0.00
0.00	122.0	1 5/8" Hybriflex	3	1.98	1.30	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	111.0	1 1/4" Hybriflex	3	1.54	1.00	33	Lin App	Block	0.00	N	1.00	1.00	0.00
0.00	111.0	1.54" (39.2mm)	1	1.54	1.60	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	104.0	0.39" (10mm) Fiber	2	0.39	0.06	50	Lin App	Block	0,00	N	1.00	1.00	0.00
0.00	104.0	0.78" (19.7mm) 8	4	0.78	0.59	50	Lin App	Block	0.00	N	1.00	1.00	0.00
0.00	104.0	2" conduit	1	2,38	3.65	100	Lin App	Individual	0.00	N	1.00	1.00	0.01
0.00	104.0	2" conduit	1	2.38	3.65	100	Lin App	Individual	0.00	N	1.00	1.00	0.01
0.00	104.0	7/8" Coax	12	1.09	0.33	50	Lin App	Block	0.00	Ň	1.00	1.00	0.00
0.00	85.00	1/2" Coax	1	0.63	0.15	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	75.00	1/2" Coax	1	0.63	0.15	100	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	53.00	1/2" Coax	4	0.63	0.15	100	Lin App	Cluster	1.26	N	1.00	1.00	0.00

Site Number:	88166	Code:	ANSI/TIA-222-G	© 2007 • 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Equivalent Lateral Force Method

(Based on ASCE7-10 Chapters 11, 12 & 15)

Spectral Response Acceleration for Short Period (S):	0.23
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.07
Long-Period Transition Period (T Seconds):	6
Importance Factor (I _e):	1.00
Site Coefficient F a:	1.60
Site Coefficient F _v :	2.40
Response Modification Coefficient (R):	3.00
Design Spectral Response Acceleration at Short Period (S ds):	0.25
Design Spectral Response Acceleration at 1.0 Second Period (S d):	0.11
Seismic Response Coefficient (C s):	0.08
Upper Limit C _s :	80.0
Lower Limit C s:	0.03
Period based on Rayleigh Method (sec):	0.49
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	1.00
Total Unfactored Dead Load:	65.64 k
Seismic Base Shear (E):	6.56 k

LoadCase (1.2 + 0.2Sds) * DL + E

Seismic

Section	Height Above Base (ft)	Weight (lb)	₩₂ (lb-ft)	C _{vx}	Horizontal Force (Ib)	Vertical Force (lb)
10	120.71	2,268	273,826	0.056	366	2,836
9	112.13	2,022	226,682	0.046	303	2,527
8	102.75	3,101	318,609	0.065	425	3,876
7	92.58	2,827	261,737	0.053	349	3,534
6	81.25	3,990	324,173	0.066	433	4,988
5	68.75	4,357	299,558	0.061	400	5,447
4	56.25	4,535	255,120	0.052	341	5,670
3	43.75	5,180	226,619	0.046	303	6,476
2	31.25	5,316	166,131	0.034	222	6,646
1	12.50	10,499	131,235	0.027	175	13,125
Generic 12' Omni	132.00	40	5,280	0.001	7	50
Alcatel-Lucent B13 RRH4x30-4R	128.00	173	22,195	0.005	30	217
Commscope JAHH-65B-R3B	128.00	364	46,541	0.009	62	455
Commscope SBNHH-1D65B	128.00	152	19,469	0.004	26	190
Nokia AHCA AirScale RRH 4T4R B5 160V	v 128.00	106	13,555	0.003	18	132
Nokia AHFIC AirScale Dual RRH 4T4R	128.00	238	30,490	0.006	41	298
Raycap RxxDC-3315-PF-48	128.00	64	8,216	0.002	11	80
20' Pipe	125.00	100	12,500	0.003	17	125
Decibel DB844H90E-XY	125.00	168	21,000	0.004	28	210
Heavy Platform with Handrails	125.00	6,000	750,000	0.153	1,001	7,501
Pole Mount	125.00	180	22,500	0.005	30	225
Round Sector Frame	125.00	900	112,500	0.023	150	1,125
Andrew ETW200VS12UB	122.00	33	4,026	0.001	5	41

Site Number:	88166	Code:	ANSI/TIA-222-G	2007 • 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Equivalent Lateral Force Method

Ericsson KRY 112 489/2	122.00	46	5,636	0.001	8	58
Ericsson Radio 4449 B12,871	122.00	222	27,084	0.006	36	278
RFS APX16DWV-16DWVS-E-A20	122.00	122	14,896	0.003	20	153
RFS APXVAARR24_43-U-NA20	122.00	384	46,811	0.010	63	480
Heavy Sector Frame	113.00	1,500	169,500	0.034	226	1,875
Catwalk	112.50	5,000	562,500	0.114	751	6,251
Alcatel-Lucent 1900MHz RRH (65MHz)	111.00	180	19,980	0.004	27	225
Alcatel-Lucent 800 MHz RRH w/ Notch	111.00	185	20,579	0.004	27	232
Alcatel-Lucent TD-RRH8x20-25 w/ Solar	111.00	210	23,310	0.005	31	263
RFS ACU-A20-N	111.00	3	333	0.000	0	4
RFS APXVSPP18-C	111.00	171	18,981	0.004	25	214
RFS APXVTM14-ALU-I20	111.00	169	18,715	0.004	25	211
Alcatel-Lucent 9442 RRH2x40-AWS	104.00	147	15,288	0.003	20	184
Alcatel-Lucent B25 RRH4x30	104.00	159	16,536	0.003	22	199
Alcatel-Lucent RRH4x25-WCS-4R	104.00	210	21,840	0.004	29	263
Commscope NNHH-65C-R4	104.00	893	92,851	0.019	124	1,116
Nokia Airscale Dual RRH 4T4R B12/B14	104.00	232	24,086	0.005	32	290
Nokia AirScale RRH 4T4R B5 160W AHCA	104.00	106	11,014	0.002	15	132
Raycap DC6-48-60-18-8F ("Squid")	104.00	32	3,307	0.001	4	40
Raycap DC6-48-60-18-8F (23.5" Height)	104.00	20	2,080	0.000	3	25
Sector Frame Sabre 12' EHD V-Boom	104.00	1,590	165,360	0.034	221	1,988
Generic 5" x 3" x 2" Cavity Filter	85.00	2	128	0.000	0	2
Generic Flat Side Arm	85.00	188	15,938	0.003	21	234
Generic Low Noise Amplifier	85.00	2	170	0.000	0	3
Procom CXL 900-3LW	85.00	2	128	0.000	0	2
Rest Platform	76.00	500	38,000	0.008	51	625
Generic GPS	75.00	10	750	0.000	1	13
Stand-Off	75.00	100	7,500	0.002	10	125
Stand-Off	56.00	100	5,600	0.001	7	125
Generic GPS	53.00	40	2,120	0.000	3	50
Rest Platform	25.00	500	12,500	0.003	17	625

LoadCase (0.9 - 0.2Sds) * DL + E

Seismic (Reduced DL)

Section	Height Above Base (ft)	Weight (Ib)	W _z (Ib-ft)	C _{vx}	Horizontal Force (lb)	Vertical Force (lb)
10	120.71	2,268	273,826	0.056	366	1,928
9	112.13	2,022	226,682	0.046	303	1,718
8	102.75	3,101	318,609	0.065	425	2,635
7	92.58	2,827	261,737	0.053	349	2,403
6	81.25	3,990	324,173	0.066	433	3,391
5	68.75	4,357	299,558	0.061	400	3,703
4	56.25	4,535	255,120	0.052	341	3,855
3	43.75	5,180	226,619	0.046	303	4,402
2	31.25	5,316	166,131	0.034	222	4,518
1	12.50	10,499	131,235	0.027	175	8,923
Generic 12' Omni	132.00	40	5,280	0.001	7	34
Alcatel-Lucent B13 RRH4x30-4R	128.00	173	22,195	0.005	30	147
Commscope JAHH-65B-R3B	128.00	364	46,541	0.009	62	309
Commscope SBNHH-1D65B	128.00	152	19,469	0.004	26	129
Nokia AHCA AirScale RRH 4T4R B5 160V	128.00	106	13,555	0.003	18	90
Nokia AHFIC AirScale Dual RRH 4T4R	128.00	238	30,490	0.006	41	202
Raycap RxxDC-3315-PF-48	128.00	64	8,218	0.002	11	55

Site Number:	88166	Code:	ANSI/TIA-222-G	© 2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Equivalent Lateral Force Method

20' Pipe	125.00	100	12,500	0.003	17	85
Decibel DB844H90E-XY	125.00	168	21,000	0.004	28	143
Heavy Platform with Handrails	125.00	6,000	750,000	0.153	1,001	5,099
Pole Mount	125.00	180	22,500	0.005	30	153
Round Sector Frame	125.00	900	112,500	0.023	150	765
Andrew ETW200VS12UB	122.00	33	4,026	0.001	5	28
Ericsson KRY 112 489/2	122.00	46	5,636	0.001	8	39
Ericsson Radio 4449 B12,B71	122.00	222	27,084	0.006	36	189
RFS APX16DWV-16DWVS-E-A20	122.00	122	14,896	0.003	20	104
RFS APXVAARR24_43-U-NA20	122.00	384	46,811	0.010	63	326
Heavy Sector Frame	113.00	1,500	169,500	0.034	226	1,275
Catwalk	112.50	5,000	562,500	0.114	751	4,249
Alcatel-Lucent 1900MHz RRH (65MHz)	111.00	180	19,980	0.004	27	153
Alcatel-Lucent 800 MHz RRH w/ Notch	111.00	185	20,579	0.004	27	158
Alcatel-Lucent TD-RRH8x20-25 w/ Solar	111.00	210	23,310	0.005	31	178
RFS ACU-A20-N	111.00	3	333	0.000	0	3
RFS APXVSPP18-C	111.00	171	18,981	0.004	25	145
RFS APXVTM14-ALU-I20	111.00	169	18,715	0.004	25	143
Alcatel-Lucent 9442 RRH2x40-AWS	104.00	147	15,288	0.003	20	125
Alcatel-Lucent B25 RRH4x30	104.00	159	16,536	0.003	22	135
Alcatel-Lucent RRH4x25-WCS-4R	104.00	210	21,840	0.004	29	178
Commscope NNHH-65C-R4	104.00	893	92,851	0.019	124	759
Nokia Airscale Dual RRH 4T4R B12/B14	104.00	232	24,086	0.005	32	197
Nokia AirScale RRH 4T4R B5 160W AHCA	104.00	106	11,014	0.002	15	90
Raycap DC6-48-60-18-8F ("Squid")	104.00	32	3,307	0.001	4	27
Raycap DC6-48-60-18-8F (23.5" Height)	104.00	20	2,080	0.000	3	17
Sector Frame Sabre 12' EHD V-Boom	104.00	1,590	165,360	0.034	221	1,351
Generic 5" x 3" x 2" Cavity Filter	85.00	2	128	0.000	0	1
Generic Flat Side Arm	85.00	188	15,938	0.003	21	159
Generic Low Noise Amplifier	85.00	2	170	0.000	0	2
Procom CXL 900-3LW	85.00	2	128	0.000	0	1
Rest Platform	76.00	500	36,000	0.008	51	425
Generic GPS	75.00	10	750	0.000	1	8
Stand-Off	75.00	100	7,500	0.002	10	85
Stand-Off	56.00	100	5,600	0.001	7	85
Generic GPS	53.00	40	2,120	0.000	3	34
Rest Platform	25.00	500	12,500	0.003	17	425
		65,636	4,915,484	1.000	6,563	55,782

Site Number:	88166	Code:	ANSI/TIA-222-G	2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Equivalent Modal Analysis Method

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S s):	0.23
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.07
Importance Factor (I _c):	1.00
Site Coefficient F:	1.60
Site Coefficient F v:	2.40
Response Modification Coefficient (R):	3.00
Design Spectral Response Acceleration at Short Period (S dis):	0.25
Desing Spectral Response Acceleration at 1.0 Second Period (S d1):	0.11
Period Based on Rayleigh Method (sec):	0.49
Redundancy Factor (p):	1.30

IdCase (1.2 + 0.2Sds) * D	Height		Seismic				Horizontal	Vertical
	Above Base	Weight					Force	Force
Section	(ft)	(lb)	a	b	C	S _{az}	(lb)	(Ib)
)	120.71	2,268	1.762	1.373	0.914	0.541	532	2,836
	112.13	2,022	1.521	0.554	0.568	0.388	340	2,527
	102.75	3,101	1.277	0.090	0.316	0.272	366	3,876
	92.58	2,827	1.037	-0.099	0.150	0.196	240	3,534
	61.25	3,990	0.799	-0.112	0.053	0.149	258	4,988
	68.75	4,357	0.572	-0.043	0.012	0.120	226	5,447
	56.25	4,535	0.383	0.023	0.007	0.094	185	5,670
	43.75	5,180	0.232	0.058	0.019	0.069	154	6,476
	31.25	5,316	0.118	0.070	0.035	0.045	105	6,646
	12.50	10,499	0.019	0.063	0.037	0.021	96	13,125
eneric 12' Omni	132.00	40	2.108	3.336	1.602	0.820	14	50
catel-Lucent B13 RRH4x30-4R	128.00	173	1.982	2.500	1.323	0.711	53	217
ommscope JAHH-65B-R3B	128.00	364	1.982	2.500	1.323	0.711	112	455
ommscope SBNHH-1D65B	128.00	152	1.982	2.500	1.323	0.711	47	190
okia AHCA AirScale RRH 4T4R	128.00	106	1.982	2.500	1.323	0.711	33	132
okia AHFIC AirScale Dual RRH	128.00	238	1.982	2.500	1.323	0.711	73	298
aycap RxxDC-3315-PF-48	128.00	64	1.982	2.500	1.323	0.711	20	80
)' Pipe	125.00	100	1.890	1.960	1.140	0.637	28	125
ecibel DB844H90E-XY	125.00	168	1.890	1.980	1.140	0.637	46	210
eavy Platform with Handrails	125.00	6,000	1.890	1.980	1.140	0.637	1,656	7,501
ole Mount	125.00	180	1.890	1.980	1.140	0.637	50	225
ound Sector Frame	125.00	900	1.890	1.980	1.140	0.637	248	1,125
ndrew ETW200VS12UB	122.00	33	1.600	1.540	0.978	0.569	8	41
icsson KRY 112 489/2	122.00	46	1.800	1.540	0.978	0.569	11	58
icsson Radio 4449 B12,B71	122.00	222	1.800	1.540	0.978	0.569	55	278
FS APX16DWV-16DWVS-E-A20	122.00	122	1.800	1.540	0.978	0.569	30	153
FS APXVAARR24_43-U-NA20	122.00	384	1.800	1.540	0.978	0.569	95	480
avy Sector Frame	113.00	1,500	1.545	0.617	0.597	0.402	261	1,875
atwalk	112.50	5,000	1.531	0.580	0.580	0.394	853	6,251
catel-Lucent 1900MHz RRH	111.00	180	1.490	0.478	0.531	0.372	29	225
catel-Lucent 800 MHz RRH w/	111.00	185	1.490	0.478	0.531	0.372	30	232
catel-Lucent TD-RRH8x20-25	111.00	210	1.490	0.478	0.531	0.372	34	263
SACU-A20-N	111.00	3	1.490	0.478	0.531	0.372	0	4
S APXVSPP18-C	111.00	171	1.490	0.478	0.531	0.372	28	214
S APXVTM14-ALU-I20	111.00	169	1.490	0.478	0.531	0.372	27	211
catel-Lucent 9442 RRH2x40-	104.00	147	1.308	0.132	0.343	0.285	18	184
catel-Lucent B25 RRH4x30	104.00	159	1.308	0.132	0.343	0.285	20	199
catel-Lucent RRH4x25-WCS-4R		210	1.308	0.132	0.343	0.285	26	263

Site Number:	88166	Code:	ANSI/TIA-222-G	© 2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Equivalent Modal Analysis Method

		Equivale	nt Modal	Analysi	is Metho	d		
Commscope NNHH-65C-R4	104.00	893	1.308	0.132	0.343	0.285	110	1,116
Nokia Airscale Dual RRH 4T4R	104.00	232	1.308	0.132	0.343	0.285	29	290
Nokia AirScale RRH 4T4R 85	104.00	106	1.308	0.132	0.343	0.285	13	132
Raycap DC6-48-60-18-8F ("Squid")	104.00	32	1.308	0.132	0.343	0.285	4	40
Raycap DC6-48-60-18-8F (23.5"	104.00	20	1.308	0.132	0.343	0.285	2	25
Sector Frame Sabre 12' EHD V-	104.00	1,590	1.308	0.132	0.343	0.285	196	1,988
Generic 5" x 3" x 2" Cavity Filter	85.00	2	0.874	-0.121	0.078	0.161	0	2
Generic Flat Side Arm	85.00	188	0.874	-0.121	0.078	0.161	13	234
Generic Low Noise Amplifier	85.00	2	0.874	-0.121	0.078	0.161	0	3
Procom CXL 900-3LW	85.00	2	0.874	-0.121	0.078	0.161	0	2
Rest Platform	76.00	500	0.699	-0.086	0.030	0.135	29	625
Generic GPS	75.00	10	0.680	-0.081	0.026	0.133	1	13
Stand-Off	75.00	100	0.680	-0.081	0.026	0.133	6	125
Stand-Off	56.00	100	0.379	0.024	0.007	0.094	4	125
Generic GPS	53.00	40	0.340	0.036	0.009	0.088	2	50
Rest Platform	25.00	500	0.076	0.072	0.040	0.036	8	625
		65,636	70.311	42.571	30.145	19.867	6,824	82,054

LoadCase (0.9 - 0.2Sds) * DL + E

Seismic (Reduced DL)

<u>oadcase (0.9 - 0.250s) " DL</u>	. + E		Seismic	(keance				
	Height Above Base	Weight				•	Horizontal Force	Vertical Force
Section	(ft)	(ib)	a	b	C	Saz	(lb)	(lb)
10	120,71	2,268	1.762	1.373	0.914	0.541	532	1,928
9	112.13	2.022	1.521	0.554	0.568	0.388	340	1,718
8	102.75	3,101	1.277	0.090	0.316	0.272	366	2,635
7	92.58	2,827	1.037	-0.099	0.150	0.196	240	2,403
6	81.25	3,990	0.799	-0.112	0.053	0.149	258	3,391
5	68.75	4,357	0.572	-0.043	0.012	0.120	226	3,703
4	56.25	4,535	0.383	0.023	0.007	0.094	185	3,855
3	43.75	5,180	0.232	0.058	0.019	0.069	154	4,402
2	31.25	5,316	0.118	0.070	0.035	0.045	105	4,518
1	12.50	10,499	0.019	0.063	0.037	0.021	96	8,923
Generic 12' Omni	132.00	40	2.108	3.336	1.602	0.820	14	34
Alcatel-Lucent B13 RRH4x30-4R	128.00	173	1.982	2.500	1.323	0.711	53	147
Commscope JAHH-65B-R3B	128.00	364	1.982	2.500	1.323	0,711	112	309
Commscope SBNHH-1D65B	128.00	152	1.982	2.500	1.323	0.711	47	129
Nokia AHCA AirScale RRH 4T4R	128.00	106	1.982	2.500	1.323	0.711	33	90
Nokia AHFIC AirScale Dual RRH	128.00	238	1.982	2.500	1.323	0.711	73	202
Raycap RxxDC-3315-PF-48	128.00	64	1.982	2.500	1.323	0.711	20	55
20' Pipe	125.00	100	1.890	1.960	1.140	0.637	28	85
Decibel D8844H90E-XY	125.00	168	1.890	1.980	1.140	0.637	46	143
Heavy Platform with Handrails	125.00	6,000	1.890	1.980	1.140	0.637	1,656	5,099
Pole Mount	125.00	180	1.890	1.980	1.140	0.637	50	153
Round Sector Frame	125.00	900	1.890	1,980	1.140	0.637	248	765
Andrew ETW200VS12UB	122.00	33	1.800	1.540	0.978	0.569	8	28
Ericsson KRY 112 489/2	122.00	46	1.800	1.540	0.978	0.569	11	39
Ericsson Radio 4449 B12, B71	122.00	222	1.800	1.540	0.978	0.569	55	189
RFS APX16DWV-16DWVS-E-A20	122.00	122	1.800	1.540	0.978	0.569	30	104
RFS APXVAARR24_43-U-NA20	122.00	384	1.600	1.540	0.978	0.569	95	326
Heavy Sector Frame	113.00	1,500	1.545	0.617	0.597	0.402	261	1,275
Catwalk	112.50	5,000	1.531	0.580	0.580	0.394	853	4,249
Alcatel-Lucent 1900MHz RRH	111.00	180	1.490	0.478	0.531	0.372	29	153
Alcatel-Lucent 800 MHz RRH w/	111.00	185	1.490	0.478	0.531	0.372	30	158
Alcatel-Lucent TD-RRH8x20-25	111.00	210	1.490	0.478	0.531	0.372	34	178
RFS ACU-A20-N	111.00	3	1.490	0.478	0.531	0.372	0	3
RFS APXVSPP18-C	111.00	171	1.490	0.478	0.531	0.372	28	145
RFS APXVTM14-ALU-I20	111.00	169	1.490	0.478	0.531	0.372	27	143
Alcatel-Lucent 9442 RRH2x40-	104.00	147	1.308	0.132	0.343	0.285	18	125
Alcatel-Lucent B25 RRH4x30	104.00	159	1.308	0.132	0.343	0.285	20	135
Alcatel-Lucent RRH4x25-WCS-4R		210	1.308	0.132	0.343	0.285	26	178
Commscope NNHH-65C-R4	104.00	893	1.308	0.132	0.343	0.285	110	759
Nokia Airscale Dual RRH 4T4R	104.00	232	1.308	0.132	0.343	0.285	29	197
Nokia AirScale RRH 4T4R 85	104.00	106	1.308	0.132	0.343	0.285	13	90

Site Number:	88166		Code:		ANSI/	TIA-222-G	D	2007 • 2019 by AT	C IP I.LC. All rights reserved.	
Site Name:	SOUTH SALEM NY, NY		Engin	eering Nun	nber: 12936	321_C3_01			6/13/2019 1:24:26 PM	
Customer:	VERIZON WIRELESS									
			Equivalent	t Modal	Analysis	Method				
Raycap DC	6-48-60-18-8F ("Squid")	104.00	32	1.308	0.132	0.343	0.285	4	27	
Raycap DC	6-48-60-18-8F (23.5"	104.00	20	1.308	0.132	0.343	0.285	2	17	
Sector Fran	ne Sabre 12' EHD V-	104.00	1,590	1.308	0.132	0.343	0.285	196	1,351	
Generic 5"	x 3" x 2" Cavity Filter	85.00	2	0.874	-0.121	0.078	0.161	0	1	
Generic Fla	t Side Arm	85.00	188	0.874	-0.121	0.078	0.161	13	159	
Generic Lov	w Noise Amplifier	85.00	2	0.874	-0.121	Ő.Ó78	0.161	Ò	2	
Procom CX	L 900-3LW	85.00	2	0.874	-0.121	0.078	0.161	0	1	

-0.086

-0.081

-0.081

0.024

0.036

0.072

42.571

0.030

0.026

0.026

0.007

0.009

0.040

30.145

0.135

0.133

0.133

0.094

0.088

0.036

19.867

1

6

42

8

6,824

29

425

8

85 85 34

425

55,782

0.699

0.680

0.680

0.379

0.340

0.076

70.311

Rest Platform

Generic GPS

Generic GPS

Rest Platform

Stand-Off

Stand-Off

76.00

75.00

75.00

56.00

53.00

25.00

500

10

100

100

40

500

65,636

Bot Compression

0.00

Code: ANSI/TIA-222-G Engineering Number: 12936321_C3_01 2007 • 2019 by ATC IP LLC. All rights reserved.

6/13/2019 1:24:26 PM

Force/Stress Summary

Section: 1 1				Bot Elev	(ft): 0.	00		Hei	ght (ft): 25	000						
														Shear	Bear		
		'n			Len		acing				Phic Pn				/phiRn	Ųşę	
Max Compression Membe	er ((ki p)	Load	Case	(ft)	x	Y	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SAE - 8X8X0.625				1.6W 45 deg	25.09	33	33								1,980.0		Member 2
HORIZ DAE - 2.5X2.5X0.2	5 -1	0.16	0.9D +	1.6W Normal	10.60	100	100	16	154.6	33.0	22.48	4	2	71.57	79.20	45	5 Member)
DIAG DAS - 3.5X3X0.25	-2	26.90	1.2D +	1.6W Normal	27.82	33	67	6	135.7	33.0	38.23	6	2	107.35	118.80	70) Member)
						_					She	_	Bear		Shear		
Max Tension Member		Pu (kip)	Load	Case	Fy (ksi)	Fu (ksi)		iit Pn kip)	Num				phiRn (kip)		it Pn (ip)	Use %	Controls
LEG SAE - 8X8X0.625	11	13.14	0.9D +	1.6W 45 deg	33	ŧ	55 28	85.42	40	4	715	5.70	1,960.4	И		39	Member
HORIZ DAE - 2.5X2.5X0.2	51	0.56	1.2D +	1.6W Normal	33	ŧ	55 E	50.10	4	2	71	1.57	63.5	3	39.24	26	Blk Shear
DIAG DAS - 3.5X3X0.25	2	25.73	1.2D +	1.6W Normal	33	ŧ	55 8	3.30	6	2	107	.35	103.1	3	63.68	40	Blk Shear
	Pu					phiR	tat	U	5ê	Num							
Max Splice Forces	(kip)	Load	Case			(kip			%	Bolts	Bolt T	/pe					
Top Tension				135 deg			0.00		0	Ð							
Top Compression				135 deg			0.00		0								
Bot Tension				135 deg			2.21		36	4	2" C10	15					
Bot Compression	180.98	1.20	r 1.6W	135 deg			0.00		0								
Section: 2 1				Bot Elev ((ft): 25	.00		Heig	ght (i	it): 12.	500						
	P				Len	Bra	acing	₩.		F'v I	Phic Pn	Num	Num	Shear nhiRay		Use	
Max Compression Membe		kip)	Load ((ft)	X	Y		KL/R				Holes	(kip)	(kip)		Controls
LEG SAE - 6X6X0.75		• ·			1					((F)			((
LEG SAE - DADAU./S		NE 44 -	1.00 4		40.55	EA	60	20	P4 4	20.0	ODE DE	20			4 000 0	0.0	
HODIT DAE . 2 582 586 24				1.6W 45 deg	12.55	50	50	50 20	64.4	33.0	205.26				1,900.8		
	5 -	9.02	1.2D +	1.6W Normal	9.820	100	100	20	145.4	33.0	25.44	4	2	71.57	79.20	35	Member)
	5 -	9.02	1.2D +		9.820	100		20		33.0		4		71.57		35	Member 2 Member) Member)
	5 -	9.02	1.2D +	1.6W Normal	9.820	100	100	20	145.4	33.0	25.44	4	2	71.57 71.57	79.20	35	Member)
DIAG DAE - 2.5X2.5X0.25	5 -1: 5 -1: P	•9.02 5.61	1.2D + 1.2D +	1.6W Normal 1.6W Normal	9.820 16.40 Fy	100 50 Fu	100 100 Ph	20 12 iit Pn	145.4 162.0 Num	33.0 33.0 Num	25.44 20.49 Shea phiR	4 4 ar nv	2 2 Bear phiRn	71.57 71.57 Bik phi	79.20 79.20 Shear t Pn	35 76 Use	Member) Member)
DIAG DAE - 2.5X2.5X0.25	5 -1: 5 -1: P	•9.02 5.61	1.2D +	1.6W Normal 1.6W Normal	9.820 16.40 Fy	100 50	100 100 Ph	20 12	145.4 162.0	33.0 33.0 Num	25.44 20.49 Shea phiR	4 4 ar nv	2 2 Bear	71.57 71.57 Bik phi	79.20 79.20 Shear	35 76 Use	Member)
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75	5 -1: 5 -1: P (9	9.02 5.61 Vu (kip)	1.2D + 1.2D + Load (0.9D +	1.6W Normal 1.6W Normal Case 1.6W 135 deg	9.820 16.40 Fy (ksl) 33	100 50 Fu (ksi)	100 100 Ph (k	20 12 iit Pn (ip) 19.87	145.4 162.0 Num Bolts 32	33.0 33.0 Num Holes 4	25.44 20.49 She: phiR (kip 572	4 4 ar nv)	2 2 Bear phiRn (kip) 1,877.2	71.57 71.57 Bik : phi () 9	79.20 79.20 Shear t Pn slp)	35 76 Use % 41	Member) Member) Controls Member
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.26	5 -1 5 -1 (9 5	9.02 5.61 (kip) 9.38 (9.09	1.2D + 1.2D + Load (0.9D + 1.2D +	1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal	9.820 16.40 Fy (ksl) 33 33	100 50 Fu (ksi) 5	100 100 Ph (k 55 23 55 6	20 12 iit Pn (ip) i9.87 i0.10	145.4 162.0 Num Boits 32 4	33.0 33.0 Num Holes 4 2	25.44 20.49 She: phiR (kip 572 71	4 4 nv) .56 .57	2 2 Bear phiRn (kip) 1,877.2 63.5	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn t(p) 39.24	35 76 % 41 23	i Member) Member) Controls Member Bik Shear
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.25	5 -1 5 -1 (9 5	9.02 5.61 (kip) 9.38 (9.09	1.2D + 1.2D + Load (0.9D + 1.2D +	1.6W Normal 1.6W Normal Case 1.6W 135 deg	9.820 16.40 Fy (ksl) 33	100 50 Fu (ksi) 5	100 100 Ph (k 55 23 55 6	20 12 iit Pn (ip) 19.87	145.4 162.0 Num Bolts 32	33.0 33.0 Num Holes 4	25.44 20.49 She: phiR (kip 572 71	4 4 ar nv)	2 2 Bear phiRn (kip) 1,877.2	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn slp)	35 76 % 41 23	i Member) Member) Controls Member Bik Shear
Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.25 DIAG DAE - 2.5X2.5X0.25	5 -1: 5 -1: P (5 1: 5 1: 74	9.02 5.61 (kip) 8.38 9.09 4.56	1.2D + 1.2D + Load (0.9D + 1.2D + 1.2D +	1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal	9.820 16.40 Fy (ksl) 33 33	100 50 Fu (ksi) 5	100 100 Ph (k 55 23 55 6 55 6	20 12 iit Pn (ip) 9.87 i0.10 i0.10	145.4 162.0 Num Bolts 32 4 4 4	33.0 33.0 Num Holes 4 2 2 Num	25.44 20.49 She: phiR (kip 572 71 71	4 4 nv) .56 .57 .57	2 2 Bear phiRn (kip) 1,877.2 63.5	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn t(p) 39.24	35 76 % 41 23	i Member) Member) Controls Member Bik Shear
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.26	5 -1: 5 -1: P (5 1: 5 1: 7u	9.02 5.61 (kip) 9.38 (9.09	1.2D + 1.2D + Load (0.9D + 1.2D + 1.2D +	1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal	9.820 16.40 Fy (ksl) 33 33	100 50 Fu (ksi) 5 5	100 100 Ph (k 55 23 55 6 55 6	20 12 iit Pn (ip) 9.87 i0.10 i0.10	145.4 162.0 Num Bolts 32 4 4	33.0 33.0 Num Holes 4 2 2	25.44 20.49 She: phiR (kip 572 71	4 4 nv) .56 .57 .57	2 2 Bear phiRn (kip) 1,877.2 63.5	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn t(p) 39.24	35 76 % 41 23	i Member) Member) Controls Member Bik Shear
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.25 DIAG DAE - 2.5X2.5X0.25 Max Splice Forces Top Tension	5 -1: 5 -1: 9: 5 1: 5 1: 5 1: 5 1: 5 1: 5 1: 5 1: 5 1	9.02 (5.61 (kip) (kip) 9.09 4.56 Load	1.2D + 1.2D + 1.2D + 0.9D + 1.2D + 1.2D + 1.2D + Case + 1.6W	1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal 1.6W Normal	9.820 16.40 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5 5 phiR (kip	100 100 Ph 55 23 55 6 55 6 (nt))	20 12 iit Pn (ip) 9.87 i0.10 i0.10	145.4 162.0 Num Boits 32 4 4 4 8 8 8 8 0	33.0 33.0 Num Holes 4 2 2 Num	25.44 20.49 She: phiR (kip 572 71 71	4 4 nv) .56 .57 .57	2 2 Bear phiRn (kip) 1,877.2 63.5	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn t(p) 39.24	35 76 % 41 23	Member 3 Member 3 Controls Member Bik Shear
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.25 DIAG DAE - 2.5X2.5X0.25 Max Splice Forces Top Tension Top Compression	5 -1: 5 -1: 9 5 1: 5 1: 5 1: 5 1: 5 1: 5 1: 125:23 1	-9.02 (5.61 (kip) (kip) (8.38 (9.09 (4.56 (4.56) (4.56) (1.20)	1.2D + 1.2D + 1.2D + 0.9D + 1.2D + 1.2D + 1.2D + Case + 1.6W + 1.6W	1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal 1.6W Normal 135 deg	9.820 16.40 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5 5 5 5 5 (kip 0 0 0	100 100 Ph (K 55 23 55 6 55 6 55 6 55 6 51 (N)).00	20 12 iit Pn (ip) 9.87 i0.10 i0.10	145.4 162.0 Num Boits 32 4 4 4 8 6 0 0	33.0 33.0 Num Holes 4 2 2 Num Bolts	25.44 20.49 She: phiR (kip 572 71 71	4 4 nv) .56 .57 .57	2 2 Bear phiRn (kip) 1,877.2 63.5	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn t(p) 39.24	35 76 % 41 23	i Member) Member) Controls Member Bik Shear
DIAG DAE - 2.5X2.5X0.25 Max Tension Member LEG SAE - 6X6X0.75 HORIZ DAE - 2.5X2.5X0.25 DIAG DAE - 2.5X2.5X0.25 Max Splice Forces Top Tension	5 -1: 5 -1: 9: 5 1: 5 1: 5 1: 5 1: 5 1: 5 1: 5 1: 5 1	-9.02 (5.61 (kip) (kip) (8.38 (9.09 (4.56 (4.56) (4.56) (1.20)	1.2D + 1.2D + 1.2D + 0.9D + 1.2D + 1.2D + 1.2D + Case + 1.6W + 1.6W	1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal 1.6W Normal 135 deg	9.820 16.40 Fy (ksl) 33 33	100 50 Fu (ksi) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100 100 Ph 55 23 55 6 55 6 (nt))	20 12 iit Pn (ip) 9.87 i0.10 i0.10	145.4 162.0 Num Boits 32 4 4 4 8 8 8 8 0	33.0 33.0 Num Holes 4 2 2 Num Bolts	25.44 20.49 She: phiR (kip 572 71 71	4 4 nv) .56 .57 .57	2 2 Bear phiRn (kip) 1,877.2 63.5	71.57 71.57 Bik : phi () 9 3	79.20 79.20 Shear t Pn t(p) 39.24	35 76 % 41 23	Member) Member) Controls

0.00

0

Code: ANSI/TIA-222-G Engineering Number: 12936321_C3_01 5 2007 - 2019 by ATC IP I.I.C. All rights reserved.

6/13/2019 1:24:26 PM

Section: 3 1				Bot Elev	(ft): 37	.50		Hei	ght (ft): 12	.500						
															Bear		
	P	u –			Len	Bra	acing	3%		F'y	Phic Pn	Num	Num	phiRm	phiRn	Use	
Max Compression Membe	r ((ip)	Load	Case	(ft)	X	Y	Z	KL/R	(kși)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SAE - 6X6X0.75	-10	5.49	1.2D +	1.6W 45 deg	12.53		50				205.37	0	0	0.00	0.00	51	Member 2
HORIZ DAE - 2.5X2.5X0.25				1.6W Normal				/	137.9				2	71.57			Member)
DIAG DAE - 2.5X2.5X0.25	-1	6.47	1.2D +	1.6W Normal	15.90	50	100	12	157.9	33.0	21.57	4	2	71.57	79.20	76	i Member '
	_				_	_	_				She		Bear		Shear		
Max Tension Member		'u kio)	Load	Case	Fy (ksi)	Fu (kşi)		hit Pr kip)	Num Bolts				phiRn (kip)		it Pn kip}	Use %	Controls
LEG SAE - 6X6X0.75				1.6W 45 deg	33		-	50.67	0).00	0.0				Member
HORIZ DAE - 2.5X2.5X0.25				1.6W Normal				60.10	4	-		1.57	63.6		39.24	24	
DIAG DAE - 2.5X2.5X0.25	1	5.48	1.2D +	1.6W Normal	33	1	55	60.10	4	2	7'	1.57	63.6	i3	39.24	39	Blk Shea
	•									A1							
Max Splice Forces	Pu (kip) l	.oad	Case			phiF (kip		_	se %	Num Bolts	Bolt T	уре					
Top Tension).9D 4	+ 1.6W	135 deg		_	0.00		0	0							
Top Compression	105.22	.2D 1	+ 1.6W	135 deg			0.00		0								
Bot Tension		1.9D 4	+1.6W	135 deg			0.00		0								
Bot Compression	0.00						0.00		0								
Section: 4 1				Bot Elev	(ft): 50	.00		Hei	ght (1	ft): 12	500						
	P				1.44		1	. nr		Ehr	Dista Dis	Maxim	M. La com		Bear		
			Load (` ***	Len (ft)	X	acing Y		KL/R		Phic Pn (kin)		Holes	-	•	Use %	Controls
Max Compression Member																	
LEG SAE - 6X6X0.5625				1.6W 135 deg		50 100	50					24			1,069.2		Member 2
HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25				1.6W Normai 1.6W Normai		50	100		126.8 188.2			-	2	71.57	79.20 79.20		Member 3 Member 3
MG DAL . 1.04140.10	-1	3,35	1,20 +	LOW NOTHIA	10.04	94	100	14	100.4	22.0	19,99	-	6	1101	/3,40	100	Meniber
											She	ar	Bear	Bik	Shear		
Wax Tension Member		u kio)	Load	Case	Fy (ksi)	Fu (ksi)		hit Pn kip)	Num Bolts	Num Hole:			phiRn (kip)		it Pn dp)	Use %	Controls
EG SAE - 6X6X0.5625				1.6W 45 deg	33			84.03	24	4		.42	1.051.5				Member
ORIZ DAE - 2.5X2.5X0.25				1.6W Normal				60.10	4	2		.57	63.5	-	39.24		Blk Shear
DIAG DAL - 2.5X2X0.25	1	2.75	1.2D + 1	1.6W Normai	33	5	5 5 (52.36	4	2	71	.57	63.5	3	39.24	32	Blk Shear
	Ри					phiß	Int	10	se	Num							
Max Splice Forces		oad (Case			(kip			%	Bolts	Bolt Ty	/pe					
Top Tension				135 deg			0.00		0	0							
Top Compression				135 deg			0.00		0								
Bot Tension		.9D +	1.6W	135 deg			0.00		0								
Bot Compression	0.00						0.00		Ō								

Code: ANSI/TIA-222-G Engineering Number: 12936321_C3_01 © 2007 - 2019 by ATC IP LLC. All rights reserved.

6/13/2019 1:24:26 PM

Section: 5 1				Bot Elev	(ft): 62	.50		Hei	ght (1	f t): 12 .	.500						
										P 4				Shear			
		Pu	1	^	Len		ncing		101.05		Phic Pn				phiRn	Use	
Max Compression Member	r	(kip)	Load	Cașe	(ft)	X	Y	4	KL/R	(K <u>Ş</u> I)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SAE - 6X6X0.5625 HORIZ DAE - 2.5X2.5X0.25				1.6W 45 deg 1.6W Normal	12.55		50 120	50	63.8 116.7	33.0 33.0	156.91 36.63	0 4	0 2	0.00 71.57	0.00 79.20		5 Member 2 9 Member 2
DIAG DAL - 2.5X2X0.25				1.6W Normal		50	100		182.6		14.44		2	71.57	79.20) Member)
									102.0	00.0		-	-	1 1.01			·
											She	ar	Bear	Bik !	Shear		
		Pu			Fy	Fu			Num	Num	phiR		phiRn	phi	t Pn	Use	Controlo
Max Tension Member		(kip)	Load	Case	(ksi)	(kşi)	()	ip)	Bolts	Hole	s (kip	•)	(kip)	(k	lp)	%	Controls
LEG SAE - 6X6X0.5625				1.6W 45 deg	33	-		0.97	0	0	_	.00	0.0				Member
HORIZ DAE - 2.5X2.5X0.25 DIAG DAL - 2.5X2X0.25				1.6W Normal	33			0.10	4	2		.57	63.5	-	39.24		Blk Shear
DIAG DAL - 2.5X2X0.25		13.75	1.20 +	1.6W Normal	33	5	5 5	2.36	4	2	71	.57	63.5	3	39.24	35	Blk Shear
	n									83							
Max Splice Forces	Pu (kip)	Load	Case			phiR (kip		-	5e %	Num Bolts	Bolt Ty	/De					
Top Tension		0.00	4 1 GW	135 deg).00		0	0							
Top Compression				135 deg		-).00		ō	v							
Bot Tension				135 deg			0.00		Ó								
Bot Compression	0.00			-		0	00.0		0								
Section: 6 1				Bot Elev	(ft): 75	.00		Heig	ght (f	t): 12.	500						
														Shear	Bear		
	I	Pu			Len	Bra	cing	%		F'y (Phic Pn	Num	Num	phiRnv	phiRn	Use	
Max Compression Member	,	(kip)	Load	Case	(ft)	x	Y	Z	MA NO	dia bis	46 3 5	20 A .		11.1.1.1		%	Controls
max vonipression member									NUN	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)		
LEG SAE - 6X6X0.4375	_	52.13	1.2D +	1.6W 135 deg	12.53	50	50	- 50	63.2	(KSI) 33.0	(kip) 123.94	Bolts 24		(KIP) 129.42		_	Member 2
LEG SAE - 6X6X0.4375	_			1.6W 135 deg 1.6W Normal		50 100	50 107	50	_			_			831.60	42	
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25	-	-6.16	0.9D +	~	6.830			50 33	63.2	33.0	123.94	24 4	4 -	429.42 71.57	831.60	42 15	Member >
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25	-	-6.16	0.9D +	1.6W Normal	6.830	100	107	50 33	63.2 106.6	33.0 33.0	123.94 40.86 15.15	24 4 4	4 - 2 2	429.42 71.57 71.57	831.60 79.20 79.20	42 15	Member >
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25	-	•6.16 •14.77	0.9D +	1.6W Normal	6.830 14.58	100 50	107 100	50 33 12	63.2 106.6 178.2	33.0 33.0 33.0	123.94 40.86 15.15 She:	24 4 4	4 4 2 2 Bear	429.42 71.57 71.57 Bik S	831.50 79.20 79.20 Shear	42 15 97	Member >
LEG SAE - 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.26 DIAG DAL • 2.5X2X0.25	-	•6.16 •14.77 Pu	0.9D +	1.6W Normal 1.6W Normal	6.830	100 50 Fu	107 100 Phi	50 33 12	63.2 106.6	33.0 33.0 33.0 33.0	123.94 40.86 15.15 She: phiR	24 4 4	4 - 2 2	429.42 71.57 71.57 Bik S phil	831.60 79.20 79.20	42 15 97 Use	Member)
LEG SAE - 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25 Max Tension Member	-	•6.16 •14.77 Pu (kip)	0.9D + 1.2D + Load	1.6W Normal 1.6W Normal	6.830 14.58 Fy	100 50 Fu (ksi)	107 100 Ph (k	50 33 12 it Pn	63.2 106.6 178.2 Num	33.0 33.0 33.0 33.0	123.94 40.86 15.15 Shea phiR	24 4 4 ar nv	4 2 2 Bear phiRn	429.42 71.57 71.57 Bik S phil (k	831.60 79.20 79.20 5hear t Pn	42 15 97 Use %	i Member) ' Member)
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25 DIAG DAL - 2.5X2X0.25 Max Tension Member LEG SAE - 6X6X0.4375	-	•6.16 •14.77 Pu (kip) 34.27	0.9D + 1.2D + Load • 0.9D +	1.6W Normal 1.6W Normal Case	6.830 14.58 Fy (ksi)	100 50 Fu (ksl)	107 100 Phi (k 5 14	50 33 12 it Pn ip)	63.2 106.6 178.2 Num Bolts	33.0 33.0 33.0 Num Holes	123.94 40.86 15.15 She: phiR (klp 429	24 4 4 ar nv	4 2 2 Bear phiRn (kip)	429.42 71.57 71.57 Bik \$ phil (k	831.60 79.20 79.20 5hear t Pn	42 15 97 Use %	Member) Member) Controls
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25 DIAG DAL - 2.5X2X0.25 Max Tension Member LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.6X0.25	-	•6.16 14.77 Pu (kip) 34.27 7.55	0.9D + 1.2D + Load (0.9D + 1.2D +	1.6W Normal 1.6W Normal Case 1.6W 45 deg	6.830 14.58 Fy (ksi) 33	100 50 Fu (ksl) 5	107 100 Phi (k 5 14 5 6	50 33 12 it Pn ip) 5.56	63.2 106.6 178.2 Num Bolts 24	33.0 33.0 33.0 Num Holes	123.94 40.86 15.15 She: phiR (kip 429 71	24 4 4 ar nv)	4 4 2 2 Bear phiRn (kip) 817.8	429.42 71.57 71.57 Bik S phil (k 8 3	831.60 79.20 79.20 Shear t Pn ip)	42 15 97 Use % 23 19	Member) Member) Controls Member
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25 DIAG DAL - 2.5X2X0.25 Max Tension Member LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.6X0.25	-	•6.16 14.77 Pu (kip) 34.27 7.55	0.9D + 1.2D + Load (0.9D + 1.2D +	1.6W Normal 1.6W Normal Case 1.6W 45 deg 1.6W Normal	6.830 14.58 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5	107 100 Phi (k 5 14 5 6 5 5	50 33 12 it Pn ip) 5.56 0.10 2.36	63.2 106.6 178.2 Num Bolts 24 4 4	33.0 33.0 33.0 33.0 Num Holes 4 2 2	123.94 40.86 15.15 She: phiR (kip 429 71	24 4 4 ar nv) .42 .57	4 4 2 2 Bear phiRn (kip) 817.8 63.5	429.42 71.57 71.57 Bik S phil (k 8 3	831.60 79.20 79.20 Shear t Pn ip) 39.24	42 15 97 Use % 23 19	i Member) Member) Controls Member Bik Shear
LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.5X0.25 DIAG DAL - 2.5X2X0.25 Max Tension Member LEG SAE - 6X6X0.4375 HORIZ DAE - 2.5X2.6X0.25 DIAG DAL - 2.5X2X0.25	- - Pu	•6.16 14.77 Pu (kip) 34.27 7.55 14.15	0.9D + 1.2D + Load (0.9D + 1.2D + 0.9D +	1.6W Normal 1.6W Normal Case 1.6W 45 deg 1.6W Normal	6.830 14.58 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5 5 5	107 100 Phi (k 5 14 5 6 5 5	50 33 12 it Pn ip) 5.56 0.10 2.36	63.2 106.6 178.2 Num Bolts 24 4 4	33.0 33.0 33.0 Num Holes 4 2 2 Num	123.94 40.86 15.15 She: phiR (klp 429 71 71	24 4 4 nv) .42 .57	4 4 2 2 Bear phiRn (kip) 817.8 63.5	429.42 71.57 71.57 Bik S phil (k 8 3	831.60 79.20 79.20 Shear t Pn ip) 39.24	42 15 97 Use % 23 19	Member) Member Y Controls Member Bik Shear
LEG SAE - 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25 Max Tension Member LEG SAE • 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25 Max Splice Forces	- - - (kip)	•6.16 14.77 Pu (kip) 34.27 7.55 14.15 Load	0.9D + 1.2D + Load 0 0.9D + 1.2D + 0.9D + Case	1.6W Normal 1.6W Normal Case 1.6W 45 deg 1.6W Normal 1.6W Normal	6.830 14.58 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5 5 5 5 9 hiR (kip	107 100 Phi (k 5 14 5 6 5 5 5 5	50 33 12 it Pn ip) 5.56 0.10 2.36	63.2 106.6 178.2 Num Bolts 24 4 4 4	33.0 33.0 33.0 Num Holes 4 2 2 Num Bolts	123.94 40.86 15.15 She: phiR (kip 429 71	24 4 4 nv) .42 .57	4 4 2 2 Bear phiRn (kip) 817.8 63.5	429.42 71.57 71.57 Bik S phil (k 8 3	831.60 79.20 79.20 Shear t Pn ip) 39.24	42 15 97 Use % 23 19	i Member) Member) Controls Member Bik Shear
LEG SAE - 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25 Max Tension Member LEG SAE • 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25 Max Splice Forces Top Tension	Pu (kip) 34.26	•6.16 14.77 Pu (kip) 34.27 7.55 14.15 Load 0.9D	0.9D + 1.2D + Load 0 0.9D + 1.2D + 0.9D + Case + 1.6W	1.6W Normal 1.6W Normal Case 1.6W 45 deg 1.6W Normal 1.6W Normal	6.830 14.58 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5 5 5 9 hiR (kip	107 100 Phi (k 5 14 5 6 5 5	50 33 12 it Pn ip) 5.56 0.10 2.36	63.2 106.6 178.2 Num Bolts 24 4 4 4 56 %	33.0 33.0 33.0 Num Holes 4 2 2 Num	123.94 40.86 15.15 She: phiR (klp 429 71 71	24 4 4 nv) .42 .57	4 4 2 2 Bear phiRn (kip) 817.8 63.5	429.42 71.57 71.57 Bik S phil (k 8 3	831.60 79.20 79.20 Shear t Pn ip) 39.24	42 15 97 Use % 23 19	Member) Member) Controls Member Bik Shear
LEG SAE - 6X6X0.4375 HORIZ DAE • 2.5X2.5X0.25 DIAG DAL • 2.5X2X0.25 Max Tension Member LEG SAE • 6X6X0.4375 HORIZ DAE • 2.5X2.6X0.25 DIAG DAL • 2.5X2X0.25 Max Splice Forces	Pu (kip) 34.26 51.39	•6.16 14.77 Pu (kip) 34.27 7.55 14.15 Load 0.9D 1.2D	0.9D + 1.2D + 1.2D + 0.9D + 1.2D + 0.9D + Case + 1.6W + 1.6W	1.6W Normal 1.6W Normal Case 1.6W 45 deg 1.6W Normal 1.6W Normal	6.830 14.58 Fy (ksl) 33 33	100 50 Fu (ksl) 5 5 5 5 5 9 hiR (kip 0 0	107 100 Phi (k 5 14 5 5 5 5 nt)	50 33 12 it Pn ip) 5.56 0.10 2.36	63.2 106.6 178.2 Num Bolts 24 4 4 4	33.0 33.0 33.0 Num Holes 4 2 2 Num Bolts	123.94 40.86 15.15 She: phiR (klp 429 71 71	24 4 4 nv) .42 .57	4 4 2 2 Bear phiRn (kip) 817.8 63.5	429.42 71.57 71.57 Bik S phil (k 8 3	831.60 79.20 79.20 Shear t Pn ip) 39.24	42 15 97 Use % 23 19	Member Bik Shear

Code: ANSI/TIA-222-G Engineering Number: 12936321_C3_01 © 2007 - 2019 by ATC IP LLC. All rights reserved.

6/13/2019 1:24:26 PM

Section: 7 1			Bot Elev	(ft): 87	.50		Hei	ght (i	ft): 10	.170						
									-					Bear		
	Pu		_	Len		acing			-	Phic Pn				•	Use	
Max Compression Membe	r (kip)) Load	Cașe	(ft)	x	Y	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SAE - 5X5X0.4375			1.6W 45 deg	10.22		50	50				24	-		831.60) Member
HORIZ SAU - 3X2.5X0.25 DIAG SAE - 3.5X3.5X0.25			1.6W Normal 1.6W Normal			100 50		176.5			2	1	35.78		20	Member
UIAG 3AE - 3.3A3.3AU.23	-0.2	3 1.20 +	1.0W NOTINAL	10.45	50	50	50	138.0	33.0	20.03	Z	1	35.78	39.60		Member
										She		Bear	Bik	Shear		
Max Tension Member	Pu	. Lood	Cono	Fy	Fu			Num	Num			phiRr		it Pn	Use %	Controls
) Load		(ksl)	(ksi)		dp)	Bolts			-	(kip)		cip)	30	
LEG SAE - 5X5X0.4375 HORIZ SAU - 3X2.5X0.25			1.6W 135 deg 1.6W 90 deg) 33 33	_		9.26 3.76	24	4		.42 .78	817.3		20.91	25 15	Member Blk Shea
DIAG SAE - 3.5X3.5X0.25			1.6W Normal				5.52	2	-		.78	31.7	-	23.49		Blk Shea
	0.1	0 0100						-	•				•	20.40	20	Dir. Olisa
	Pu				phiR	nt	U	se	Num							
Max Splice Forces	(kip) Loa	d Case			(kip)		%	Bolts	Bolt Ty	rpe					
Top Tension	21.88 0.91) + 1.6W	135 deg			0.00		0	0							
Top Compression	37.86 1.20				-	0.00		0								
Bot Tension Bot Compression	34.26 0.91	D + 1.6W	135 deg).00).00		0 0								
Bot Compression	0.00			_			_	•		_						
Section: 8 1			Bot Elev	(ft): 97	.67		Hei	ght (f	ťt): 10.	170						
	Pu			Len	D	cing	۵/		F'y (Dista Da	klaum	Maxim	Shear		Use	
Mar Oansersten Manha		Load (ace	(ft)	Х	Y		KL/R		Phic Pn (kip)			(kip)	(kip)	05e %	Controls
Max Compression Member														/		
LEG SAE - 5X5X0.4375 HORIZ DAL - 3X2.5X0.25			1.6W 135 deg 1.6W 45 deg		50 100	50 100	50	62.1 198.1	33.0 33.0	103.05	0	0	0.00 71.57	0.00 79.20		Member . Member
DIAG SAE - 3.5X3.5X0.25			1.6W Normal	10.90	50	50		130.9		21.95	2	<u>د</u> 1	35.78	39.60		Member
1140 OFF - 219791944123	-0. 0	9 1.20 T	LOTA ITOTHIOL	10.00	44	90	ųψ	190.9	33.9	8 L 9 9	-		99.70	33.00		Meniper
										Shea	F	Bear	Bik	Shear		
	Pu			Fy	Fu	Ph	it Pn	Num	Num	phiR	nv	phiRn		t Pn	Use	
Max Tension Member	(kip) Load	Case	(ksi)	(ksi)	(k	ip)	Bolts	Holes	s (kip)	(kip)	(*	lip)	%	Controls
EG SAE - 5X5X0.4375			1.6W 45 deg	33	-		4.15	0	0		.00	0.0				Member
HORIZ DAL - 3X2.5X0.25			1.6W Normal	33	_		7.83	4	2		.57	63.6		41.82		Blk Shea
DIAG SAE - 3.5X3.5X0.25	6.7	1 0.90 +	1.6W Normal	33	5	54	5.52	2	1	35	.78	31.7	6	23.49	28	Blk Shea
	Pu				phiR	nt	10.	šé	Num							
		d Case			(kip				Bolts	Bolt Ty	pe					
Max Splice Forces											_					
Max Splice Forces Top Tension	9.22 0.90) + 1.6W	135 deg		0	.00		0	O							
Top Tension Top Compression	9.22 0.90 26.15 1.20) + 1.0Di	+ 1.0Wi		0	.00		0	0							
Top Tension	9.22 0.90) + 1.0Di	+ 1.0Wi		0			-	o							

Site Number: 88166 Site Name: SOUTH SALEM NY, NY

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12936321_C3_01

© 2007 - 2019 by ATC IP LLC. All rights reserved.

6/13/2019 1:24:26 PM

Section: 9 1				Bot Elev	(ft): 10	7.8	H	leic	iht (1	it): 8.5	80						
				201 2101	(Shoar	Bear		
		Pu			Len	Bra	cing %	6		F'y (Phic Pn	Num	Num	÷	/phiRn	Use	
Max Compression Membe	: ۲	(kip)	Load (Case	(ft)	x			KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
EG SAE - 5X5X0.3125		-15.99	1.20 + 1	1.0DI + 1.0Wi	8.61	50	50	50	52.0	33.0	78.99	24	4	479 42	594.00	21) Member Z
HORIZ SAU - 3X2.5X0.25				1.6W Normal		100			199.7		7.42	4	2	71.57	79.20		6 Member Z
DIAG SAE - 3X3X0.25		-5.53	1.2D + :	1.6W Normal	13.48	50	50	50	132.7	33.0	18.27	2	1	35.78	39.60		Member Z
											Shea		Bear	RIL	Shear		
		Pu			Fy	Fu	Phit	Pn	Num	Num			phiRn		it Pn	Use	
Max Tension Member		(kip)	Load (Case	(ksi)	(ksi)	(kip)	Bolts	Holes	ş (kip)	(kip)	(1	dp)	%	Controls
EG SAE - 5X5X0.3125				1.6W 45 deg	33		5 79.		24	4			584.2				Member
IORIZ SAU - 3X2.5X0.25				1.6W Normal	33		5 26.		4	2		.57	71.3	_	37.61	4	
DIAG SAE - 3X3X0.25		4.22	0.9D + 1	1.6W Normal	33	Ē	5 37.	.78	2	1	35	.78	31.7	'6	20.91	20	Blk Shear
	6							tte		84							
Max Splice Forces	Pu (kip)	Load	Case			phiR (kip		Us %		Num Bolts	Bolt Ty	pe					
Fop Tension	1.66	0.9D	+ 1.6W	135 deg		(.00		0	o							
op Compression	16.90	1,2D	+ 1.0Di -	+ 1.0Wi			.00		0								
Bot Tension		0.9D	+ 1.6W ⁻	135 deg			.00		Ô.								
Bot Compression	0.00						.00		0								
Section: 10 1				Bot Elev	(ft): 11	6.4	H	leig	ht (f	t): 8.5	80						
		_				_								Shear			
		Pu			Len		cing %				Phic Pn			phiRnv	phiRn	Use	
Max Compression Membe		Pu (kip)	Load C	àse	Len (ft)	Bra X	-		<l r<="" td=""><td></td><td>Phic Pn (kip)</td><td></td><td></td><td></td><td></td><td>Use %</td><td>Controls</td></l>		Phic Pn (kip)					Use %	Controls
EG SAE - 5X5X0.3125		(kip)		Case 1.0Di + 1.0Wi	(ft)		Ϋ́:		<l r<br="">51.9</l>			Bolts D		phiRnv	phiRn	%	Controls
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5		(kip) -8.06 +0.39	1.2D + 1 1.2D + 1	1.0Di + 1.0Wi 1.6W Normal	(ft) 8.60 9.000	X 50 100	Y 3 50 100 1	Z ¥ 50	51.9 160.3	(ksi) 33.0 36.0	(kip) 79.01 29.72	Bolts D 2	Hotes 0 2	phiRnv (kip)	phiRn (kip) 0.00 36.75	%	
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5		(kip) -8.06 +0.39	1.2D + 1 1.2D + 1	1.0Di + 1.0Wi	(ft) 8.60 9.000	X 50	Y 3 50 100 1	Z ¥ 50	51.9	(ksi) 33.0	(kip) 79.01	Bolts D	Holes 0	phiRny (kip) 0.00	phiRn (kip) 0.00	%	Member Z
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5		(kip) -8.06 +0.39	1.2D + 1 1.2D + 1	1.0Di + 1.0Wi 1.6W Normal	(ft) 8.60 9.000	X 50 100	Y 3 50 100 1	Z ¥ 50	51.9 160.3	(ksi) 33.0 36.0	(kip) 79.01 29.72 19.60	Bolts D 2 2	Holes 0 2 1	phiRnv (kip) 0.00 35.78 35.78	phiRn (kip) 0.00 36.75 39.60	%	Member Z Member Y
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5		(kip) -8.06 +0.39 -3.75	1.2D + 1 1.2D + 1	1.0Di + 1.0Wi 1.6W Normal	(ft) 8.60 9.000 12.76	X 50 100 50	Y 2 50 100 1 50	50 100 - 50 -	51.9 160.3 127.2	(ksi) 33.0 36.0 33.0	(kip) 79.01 29.72 19.60 Shea	Bolts D 2 2	Hotes 0 2 1 Bear	phiRny (kip) 0.00 35.78 35.78 Blk 1	(kip) 0.00 36.75 39.60 Shear	% 10 1	Member Z Member Y
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25		(kip) -8.06 -0.39 -3.75 Pu	1.2D + 1 1.2D + 1	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal	(ft) 8.60 9.000	X 50 100	Y 3 50 100 1	Z ¥ 50 50 ⁻ 50 ⁻	51.9 160.3 127.2	(ksi) 33.0 36.0	(kip) 79.01 29.72 19.60 Shea phiRi	Bolts D 2 2 2	Holes 0 2 1	phiRny (kip) 0.00 35.78 35.78 Bik ! phi	phiRn (kip) 0.00 36.75 39.60	% 10 1	Member Z Member Y
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125		(kip) -8.06 -0.39 -3.75 Pu (kip)	1.2D + 1 1.2D + 1 1.2D + 1 Load C	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal	(ft) 8.60 9.000 12.76 Fy (ksi)	X 50 100 50 Fu	Y 50 100 1 50 Phit (klp 5 89:	Z + 50 50 50 Pn 99	51.9 160.3 127.2 Num Bolts 0	(ksi) 33.0 36.0 33.0 Num Holes	(kip) 79.01 29.72 19.60 Shea phiRi s (kip)	Bolts D 2 2 2	Holes 2 1 Bear phiRn	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k	phiRn (kip) 0.00 36.75 39.60 Shear t Pn	% 10 1 Use) Member Z Member Y Member Z
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5		(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10	1.2D + 1 1.2D + 1 1.2D + 1 Load C	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 100 50 Fu (ksl) 5	Y 50 100 1 50 Phit (kip 5 89. 8 97.	2 ¥ 50 50 71	51.9 160.3 127.2 Num Bolts 0 2	(ksi) 33.0 36.0 33.0 Num Holes 0 2	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35	Boits 0 2 2 7 19 00 78	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	phiRn (kip) 0.00 36.75 39.60 Shear t Pn	% 10 1 Use %	Member Z Member Y Member Z Controls
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5		(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30	1.2D + 1 1.2D + 1 1.2D + 1 Load C 0.9D + 1 1.2D + 1	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg	(ft) 8.60 9.000 12.76 Fy (ksi) 33	X 50 100 50 Fu (ksl)	Y 50 100 1 50 Phit (kip 5 89. 8 97.	2 ¥ 50 50 71	51.9 160.3 127.2 Num Bolts 0	(ksi) 33.0 36.0 33.0 Num Holes	(kip) 79.01 29.72 19.60 Shea phiRi s (kip) 0.	Boits 0 2 2 7 19 00 78	Hotes 0 2 1 Bear phiRn (kip) 0.0	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip)	% 10 1 Use % 1	Member Z Member Y Member Z Controls Member
HORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member LEG SAE - 5X5X0.3125 HORIZ CHN - C8 x 11.5	r	(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30	1.2D + 1 1.2D + 1 1.2D + 1 Load C 0.9D + 1 1.2D + 1	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 50 Fu (ksl) 5 5	Y 50 100 1 50 Phit (kip 5 89. 8 97. 5 37.	2 1 50 50 50 71 78	51.9 160.3 127.2 Num Bolts 0 2 2 2	(ksi) 33.0 36.0 33.0 Num Holes 0 2 1	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35	Boits 0 2 2 7 19 00 78	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip) 0.00	% 10 1 Use % 1	Member Z Member Y Member Z Controls Member Bolt Bear
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25		(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30	1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 0.9D + 1	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 100 50 Fu (ksl) 5	Y 2 50 100 1 50 Phit (kip 5 89. 8 97. 5 37.	2 ¥ 50 50 71	51.9 160.3 127.2 Num Bolts 0 2 2 2	(ksi) 33.0 36.0 33.0 Num Holes 0 2	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35	Bolts 2 2 1 1 1 1 2 2 7 1 2 2 7 1 7 2 7 1 7 7 8 7 8	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip) 0.00	% 10 1 Use % 1	Member 2 Member 2 Member 2 Controls Member Bolt Bear
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Splice Forces	Pu	(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30 3.00	1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 0.9D + 1	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 100 50 Fu (ksl) 5 5 5 5 5 5 5 5 5 5	Y 2 50 100 1 50 Phit (kip 5 89. 8 97. 5 37.	Z 1 50 50 50 50 50 70 71 78 Us %	51.9 160.3 127.2 Num Bolts 0 2 2 2	(ksi) 33.0 36.0 33.0 Num Holes 0 2 1 Num	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35. 35.	Bolts 2 2 1 1 1 1 2 2 7 1 2 2 7 1 7 2 7 1 7 7 8 7 8	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip) 0.00	% 10 1 Use % 1	Member 2 Member 2 Member 2 Controls Member Bolt Bear
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Splice Forces Fop Tension Fop Compression	Pu (kip) 0.00 8.64	(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30 3.00 Load	1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 0.9D + 1 Case + 1.0Di +	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal 1.6W 90 deg	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 50 50 Fu (ksl) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Y 2 50 100 1 50 Phit (klp 5 89: 8 97: 5 37: nt .00 .00	Z 50 50 50 50 71 78 Us %	51.9 160.3 127.2 Num Bolts 0 2 2 2 e	(ksi) 33.0 36.0 33.0 Num Holes 0 2 1 Num Bolts	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35. 35.	Bolts 2 2 1 1 1 1 2 2 7 1 2 2 7 1 7 2 7 1 7 7 8 7 8	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip) 0.00	% 10 1 Use % 1	Member 2 Member 2 Member 2 Controls Member Bolt Bear
EG SAE - 5X5X0.3125 1ORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 1ORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Splice Forces Fop Tension Fop Compression Bot Tension	Pu (kip) 0.00 8.64 1.66	(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30 3.00 Load	1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 0.9D + 1 Case	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal 1.6W 90 deg	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 100 50 Fu (ksl) 55 55 55 9hiR (kip 00 00	Y 2 50 100 1 50 Phit (klp 5 89: 8 97. 5 37. 5 37. 00 .00	Z 50 50 50 Pn 99 71 78 Us %	51.9 160.3 127.2 Num Bolts 0 2 2 2 6 6 0 0 0 0	(ksi) 33.0 36.0 33.0 Num Holes 0 2 1 Num Bolts	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35. 35.	Bolts 2 2 1 1 1 1 2 2 7 1 2 2 7 1 7 2 7 1 7 7 8 7 8	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip) 0.00	% 10 1 Use % 1	Member Z Member Y Member Z Controls Member Bolt Bear
EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Tension Member EG SAE - 5X5X0.3125 IORIZ CHN - C8 x 11.5 DIAG SAE - 3X3X0.25 Max Splice Forces Top Tension Top Compression	Pu (kip) 0.00 8.64	(kip) -8.06 -0.39 -3.75 Pu (kip) 1.10 0.30 3.00 Load	1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 1.2D + 1 0.9D + 1 Case + 1.0Di +	1.0Di + 1.0Wi 1.6W Normal 1.6W Normal Case 1.6W 135 deg 1.6W Normal 1.6W 90 deg	(ft) 8.60 9.000 12.76 Fy (ksi) 33 36	X 50 100 50 Fu (ksl) 55 55 55 9hiR (kip 00 00	Y 2 50 100 1 50 Phit (klp 5 89: 8 97: 5 37: nt .00 .00	Z 50 50 50 Pn 99 71 78 Us %	51.9 160.3 127.2 Num Bolts 0 2 2 2 e	(ksi) 33.0 36.0 33.0 Num Holes 0 2 1 Num Bolts	(kip) 79.01 29.72 19.60 Shea phiRi (kip) 0. 35. 35.	Bolts 2 2 1 1 1 1 2 2 7 1 2 2 7 1 7 2 7 1 7 7 8 7 8	Hotes 0 2 1 Bear phiRn (kip) 0.0 29.4	phiRnv (kip) 0.00 35.78 35.78 35.78 Blk ! phi (k 0 8	(kip) 0.00 36.75 39.60 Shear t Pn dip) 0.00	% 10 1 Use % 1	Member 2 Member 2 Member 2 Controls Member Bolt Bear

Site Number:	88166	Code:	ANSI/TIA-222-G	2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Detailed Reactions

	Radius	Elevation	Azimuth		FX	FY	FZ		
Load Case	(ft)	(ft)	(deg)	Node	(kip)	(kip)	(kip)	(-) = Uplift	(+) = Down
1.2D + 1.6W Normal	17.15	00.00	45	1	-7.84	128.57	-19.10		
	17.15	00.00	135	1a	5.12	-68.75	-16.52		
	17.15 17.15	00.00 00.00	225 315	1b 1c	-5.38 8.11	-89.18 128.13	-16.28 -18.82		
	17.10	00.00	210	nu -	0.11	120.19	-10.02		
1.2D + 1.6W 45 deg	17.15	00.00	45	1	-18.98	180.04	-19.38		
	17.15	00.00	135	1a	-9.71	20.12	-6.96		
	17.15	00.00	225	1b	-16.81	-140.64	-16.47		
	17.15	00.00	315	1c	-6.61	19.24	-9.31		
1.2D + 1.6W 90 deg	17.15	00.00	45	1	-18.82	128.62	-8.14		
	17.15	00.00	135	1a	-19.11	129.05	7.87		
	17.15	00.00	225	1b	-16.53	-89.23	-5.15		
	17.15	00.00	315	1c	-16.29	-89.67	5.41		
1.2D + 1.6W 135 deg	17.15	00.00	45	1	-9.50	19.70	6.77		
	17.15	00.00	135	ta	-19.19	180.47	19.19		
	17.15 17.15	00.00 00.00	225 315	1b 1c	-6.77 -16.65	19.67 -141.07	9.50 16.65		
	17.10	00.00	210	16	-10.00	-141.07	10.05		
1.2D + 1.6W 180 deg	17.15	00.00	45	1	5.15	-89.22	16.53		
	17.15	00.00	135	fa	-7.87	129.03	19.11		
	17.15	00.00	225	1b	8.13	128.60	18.82		
	17.15	00.00	315	1¢	-5.41	-89.65	16.29		
1.2D + 1.6W 225 deg	17.15	00.00	45	1	16.46	-140.64	16.81		
	17.15	00.00	135	1a	6.96	20.10	9.71		
	17.15	00.00	225	1b	19.38	180.04	18.98		
	17.15	00.00	315	1c	9.32	19.26	6.61		
1.2D + 1.6W 270 deg	17.15	00.00	45	1	16.28	-89.19	5.38		
	17.15	00,00	135	1a	16.52	-88.77	-5.12		
	17.15	00.00	225	1b	19.10	128.58	7.85		
	17.15	00.00	315	1c	18.82	128.14	-8.11		
1.2D + 1.6W 315 deg	17.15	00.00	45	1	6.80	19.68	-9.52		
	17.15	00.00	135	1a	16.62	-140.22	-16.63		
	17.15 17.15	00.00	225 315	1b	9.53	19.70	-6.80		
	17.10	00.00	212	1c	19.17	179.60	-19.17		
0.9D + 1.6W Normal	17.15	00.00	45	1	-7.50	123.59	-18.76		
	17.15	00.00	135	1ä	5.46	-93.73	-16.86		
	17.15 17.15	00.00 00.00	225 315	1b 1c	-5.72 7.77	-94.05 123.26	-16.62 -18.48		
	17.10	00.00	0.0			120.20	-10.40		
0.9D + 1.6W 45 deg	17.15	00.00	45	1	-18.64	175.04	-19.03		
	17.15 17.15	00.00 00.00	135 225	1a 45	-9.37 -17.15	15.09 -145.49	-7.30		
	17.15	00.00	220	1b 1c	-6.95	+145,49	•16.80 -8.98		
	11.15	00.00	212	16	-0.00	14.42	-0.90		
0.9D + 1.6W 90 deg	17.15	00.00	45	1	-18.48	123.60	-7.79		
	17.15	00.00 00.00	135	1a 45	-18.76 -16.86	123.92 -94.06	7.52		
	17.15 17.15	00.00	225 315	1b 1c	-16.62	-94.00	-5.48 5.74		
0.00 × 6.00 425 days	47 40				o 40				
0.9D + 1.6W 135 deg	17.15 17.15	00.00 00.00	45 135	1 1a	-9.16 -18.85	14.77 175.36	7.12 18.85		
	17.15	00.00	225	1b	-7.12	14.75	9.16		
	17.15	00.00	315	10	-16.98	-145.81	16.99		

Site Number: 88166		Code:			ANSI/TIA-222-G	© 2007 - 2019 by	ATC IP LLC. All rights reserved.
Site Name: SOUTH SALEM NY, NY		Engineeri	na Numb	er.	12936321_C3_01		6/13/2019 1:24:26 PM
,		Linghilden	19 10 11 12		1200021_00_01		W1012010 1.24.201 M
Customer: VERIZON WIRELESS							
0.9D + 1.6W 180 deg	17.15 17.15	00.00 00.00	45 135	1 1a	5.48 -94 -7.53 123		
	17.15	00.00	225	16			
	17.15	00.00	315	10	-5.75 -94		
0.9D + 1.6W 225 deg	17.15 17.15	00.00 00.00	45 135	1 1a	16.80 -145 7.30 15	.49 17.15 .07 9.37	
	17.15	00.00	225	16	19.03 175		
	17.15	00.00	315	10		.45 6.95	
0.9D + 1.6W 270 deg	17.15	00.00	45	1	16.62 -94		
	17.15	00.00	135	1a	16.86 -93		
	17.15 17.15	00.00 00.00	225 315	1b 1c	18.76 123 18.48 123		
0.9D + 1.6W 315 deg	17.15	00.00	45	1	7.14 14	.75 -9.18	
	17.15	00.00	135	1a	16.97 -145	17 -16.97	
	17.15	00.00	225	16		.78 -7.14	
	17.15	00.00	315	1c	18.83 174	72 -18.83	
1.2D + 1.0Di + 1.0Wi Normal	17.15	00.00	45	1	-5.78 88	.98 -9.84	
	17.15	00.00	135	1a		.52 -2.50	
	17.15	00.00	225	1b	1.43 16	.25 -2.51	
	17.15	00.00	315	10	5.85 87	.68 -9.69	
1.2D + 1.0Di + 1.0Wi 45 deg	17.15	00.00	45	1	-9.66 105	58 -9.84	
TTTT - FLORE - LIGHT	17.15	00.00	135	1a		88 0.74	
	17.15	00.00	225	1b	-2.50 -0	35 -2.49	
	17.15	00.00	315	1c	0.75 51	31 -6.45	
1.2D + 1.0Di + 1.0Wi 90 deg	17.15	00.00	45	1	-9.69 88	98 -5.93	
1120 - 11001 - 110411 00 1108	17.15	00.00	135	1a		25 5.86	
	17.15	00.00	225	1b		24 1.42	
	17.15	00.00	315	1c	-2.51 14	95 -1.35	
1 20 + 1 00; + 1 00; 125 dec	17.15	00.00	45	1	-6.49 52	62 -0.78	
1.2D + 1.0Di + 1.0Wi 135 deg	17.15	00.00	45 135	1a	-9.79 106		
	17.15	00.00	225	16		61 6.49	
	17.15	00.00	315	1c	-2.53 -1.	65 2.53	
1.2D + 1.0Di + 1.0Wi 180 deg	17.15	00.00	45	1	-1.42 16	25 2.50	
1.20 + 1.001 + 1.0441 160 deg	17.15	00.00	135	1a		25 9.84	
	17.15	00.00	225	1b	5.93 88		
	17.15	00.00	315	10	1.35 14	95 2.51	
1.2D + 1.0Di + 1.0Wi 225 deg	17.15	00.00	45	1	2.49 -0.	35 2.50	
1.20 + 1.001 + 1.011 220 0cg	17.15	00.00	135	:1a	-0.74 53		
	17.15	00.00	225	16	9.84 105		
	17.15	00.00	315	16	6.45 51		
1.2D + 1.0Di + 1.0Wi 270 deg	17.15	00.00	45	1	2.51 16	24 -1.43	
The street strength	17.15	00.00	135	1a	2.50 17	51 1.49	
	17.15	00.00	225	1b	9.84 88		
	17.15	00.00	315	1 c	9.69 87	69 -5.85	
1.2D + 1.0Di + 1.0Wi 315 deg	17.15	00.00	45	1	-0.71 52	61 -6.57	
erner - realer - statet als and	17.15	00.00	135	1a	2.46 0.	92 -2.46	
	17.15	00.00	225	16	6.57 52	62 0.71	
	17.15	00.00	315	1c	9.71 104	28 -9.71	
(1.2 + 0.2Sds) * DL + E Normal M1	17.15	00.00	45	1	-1.87 26	63 -2.53	
free analysis and province and	17.15	00.00	135	1a		80 0.00	
	17.15	00.00	225	1b	0.66 6.	80 0.00	
	17.15	00.00	315	1c	1.87 25	63 -2.53	

Site Number: 88166		Code:			ANSI/TIA-222-G		a 2007 - 2019 by A	TC IP LLC. All rights reserved.
Site Name: SOUTH SALEM NY, NY		Engineer	ing Numb	her:	12936321_C3_01			6/13/2019 1:24:26 PM
Customer: VERIZON WIRELESS		anginou		, vi i				0/10/2010 1/24/2011 ht
(1.2 + 0.2Sds) * DL + E Normal M2	17.15 17.15	00.00 00.00	45 135	1 1a	-1.83 -0.69	26.09 7.35	-2.36 0.16	
	17.15	00.00	225	16		7.35	0.16	
	17.15	00.00	315	10		26.09	-2.36	
(1.2 + 0.2Sds) * DL + E 45 deg M1	17.15	00.00	45	1	2 50	30.74	-2.58	
(1.2 + 0.2008) DE + E 45 089 m1	17.15	00.00	135	1a	-2.58 -1.73	16.72	0.79	
	17.15	00.00	225	1b		2.70	-0.06	
	17.15	00.00	315	10	0.79	16.72	-1.73	
(1.2 + 0.2Sds) * DL + E 45 deg M2	17.15	00.00	45	1	-2.44	29.97	-2.44	
(17.15	00.00	135	1a	-1.64	16.72	0.89	
	17.15	00.00	225	1b		3.46	0.08	
	17.15	00.00	315	1c	0.89	16.72	-1.64	
(1.2 + 0.2Sds) * DL + E 90 deg M1	17.15	00.00	45	1	-2.53	26.63	-1.87	
	17.15	00.00	135	1a	-2.53	26.63	1.87	
	17.15	00.00	225	1b		6.80	0.66	
	17.15	00.00	315	10	0.00	6.80	-0.66	
(1.2 + 0.2Sds) * DL + E 90 deg M2	17.15	00.00	45	1	-2.36	26.09	-1.83	
· · · ·	17.15	00.00	135	1a	-2.36	25.09	1.83	
	17.15	00.00	225	1b	0.16	7.35	0.69	
	17.15	00.00	315	10	0.16	7.35	-0.69	
(1.2 + 0.2Sds) * DL + E 135 deg M1	17.15	00.00	45	1	-1.73	16.72	-0.79	
	17.15	00.00	135	1 a	-2.58	30.74	2.58	
	17.15	00.00	225	1b	0.79	16.72	1.73	
	17.15	00.00	315	1c	-0.06	2.70	0.06	
(1.2 + 0.2Sds) * DL + E 135 deg M2	17.15	00.00	45	1	-1.64	16.72	-0.89	
	17.15	00.00	135	1a	-2.44	29.97	2.44	
	17.15 17.15	00.00 00.00	225 315	1b 1c	0.89 0.08	16.72 3.46	1.64 -0.08	
(1.2 + 0.2Sds) * DL + E 180 deg M1	17.15	00.00	45	1	-0.66	6.80	0.00	
	17.15 17.15	00.00 00.00	135 225	1a 1b	-1.87 1.87	26.63 26.63	2.53 2.53	
	17.15	00.00	315	10	0.66	6.80	0.00	
(1.2 + 0.2Sds) * DL + E 180 deg M2	17.15	00.00	45	1	-0.69	7.35	-0.16	
	17.15 17.15	00.00 00.00	135 225	1a 1b	-1.83 1.83	26.09 26.09	2.36 2.36	
	17.15	00.00	315	10	0.69	7.35	-0.16	
(1.2 + 0.2Sds) * DL + E 225 deg M1	17.15	00.00	15		0.00	2.70	0.00	
(1.2 + 0.2005) DL + E 225 deg mi	17.15	00.00	45 135	1 1a	0.06 -0.79	16.72	0.06 1.73	
	17.15	00.00	225	16	2.58	30.74	2.58	
	17,15	00.00	315	10	1.73	16.72	-0.79	
(1.2 + 0.2Sds) * DL + E 225 deg M2	17.15	00.00	45	1	-0.08	3.46	-0.08	
(in , aroas) or , erroussur	17.15	00.00	135	ាត	-0.89	16.72	1.64	
	17.15	00.00	225	1b	2.44	29.97	2.44	
	17.15	00.00	315	10	1.64	16.72	-0.89	
(1.2 + 0.2Sds) * DL + E 270 deg M1	17.15	00.00	45	1	0.00	6.80	-0.66	
	17.15	00.00	135	1a	0.00	6.80	0.66	
	17.15	00.00	225	1b	2.53	25.63	1.87	
	17.15	00.00	315	10	2.53	26.63	-1.87	
(1.2 + 0.2Sds) * DL + E 270 deg M2	17.15	00.00	45	1	-0.16	7.35	-0.69	
	17.15	00.00	135	1a	-0.16	7.35	0.69	
	17.15 17.15	00.00 00.00	225 315	1b 1c	2.36 2.36	26.09 26.09	1.83 -1.83	
	41-14	59.99	010	нų	8.9U	₩4.43	~ i • n A	
(1.2 + 0.2Sds) * DL + E 315 deg M1	17.15	00.00	45	1	-0.79	16.72	-1.73	
		P	age 21					

Site Number: 88166		Code:			ANSI/TIA-222-G		© 2007 - 2019 by A	TC IP LLC. All rights reserved.
Site Name: SOUTH SALEM NY, NY		Engineeri	na Numb	der-	12936321_C3_01			6/13/2019 1:24:26 PM
		Engineen	ng numu	161 -	12930321_03_01			0/13/2019 1.24.20 FW
Customer: VERIZON WIRELESS								
	17.15	00.00	135	1a	0.06	2.70	-0.06	
	17.15 17.15	00.00 00.00	225 315	1b 1c	1.73 2.58	16.72 30.74	0.79 -2.58	
	11-15	VV.VV	919	10	2.90	99.74	-2-90	
(1.2 + 0.2Sds) * DL + E 315 deg M2	17.15	00.00	45	1	-0.89	16.72	-1.64	
(17.15	00.00	135	1a	-0.08	3.46	0.08	
	17.15	00.00	225	1b		16.72	0.89	
	17.15	00.00	315	10	2.44	29.97	-2.44	
(0.9 - 0.2Sds) * DL + E Normal M1	17.15 17.15	00.00 00.00	45 135	1 1a	-1.46 -0.25	21.27 1.46	-2.12 -0.41	
	17.15	00.00	225	16	0.25	1.46	-0.41	
	17.15	00.00	315	10	1.46	21.27	-2.12	
(0.9 - 0.2Sds) * DL + E Normal M2	17.15	00.00	45	1	-1.43	20.73	-1.96	
	17.15 17.15	00.00 00.00	135 225	1a 1b	-0.29 0.29	2.00 2.00	-0.24 -0.24	
	17.15	00.00	315	10	1.43	20.73	-1.96	
(0.9 - 0.2Sds) * DL + E 45 deg M1	17.15	00.00	45	1	-2.18	25.38	-2.18	
	17.15	00.00	135	1a	-1.33	11.36	0.39	
	17.15	00.00	225	1b	-0.45	-2.65	-0.46	
	17.15	00.00	315	10	0.39	11.36	-1,33	
(0.0.0.29 do) / D1 + E 45 dog 142	47.45	00.00	45		2.04	04.04	2.04	
(0.9 - 0.2Sds) * DL + E 45 deg M2	17.15 17.15	00.00 00.00	45 135	1 1a	-2.04 -1.23	24.61 11.36	-2.04 0.48	
	17.15	00.00	225	16	-0.32	-1.88	-0.32	
	17.15	00.00	315	1c	0.48	11.36	-1.23	
						a sub		
(0.9 - 0.2Sds) * DL + E 90 deg M1	17.15 17.15	00.00 00.00	45 135	1 1a	-2.12 -2.12	21.27 21.27	-1.46 1.46	
	17.15	00.00	225	16	-0.41	1.46	0.25	
	17.15	00.00	315	1c	-0.41	1.46	-0.25	
(0.9 - 0.2Sds) * DL + E 90 deg M2	17.15	00.00	45	1	-1.96	20.73	-1.43	
	17.15 17.15	00.00 00.00	135 225	1a 1b	-1.96 -0.24	20.73 2.00	1.43 0.29	
	17.15	00.00	315	10	-0.24	2.00	-0.29	
(0.9 - 0.2Sds) * DL + E 135 deg M1	17.15	00.00	45	1	-1.33	11.36	-0.39	
	17.15	00.00	135	1a	-2.18	25.38	2.18	
	17.15	00.00 00.00	225	1b	0.39	11.36	1.33	
	17.15	00.00	315	10	-0.46	-2.65	0.46	
(0.9 - 0.2Sds) * DL + E 135 deg M2	17.15	00.00	45	1	-1.23	11.36	-0.48	
(,	17.15	00.00	135	1a	-2.04	24.61	2.04	
	17.15	00.00	225	1b	0.48	11.36	1.23	
	17.15	00.00	315	10	-0.32	-1.88	0.32	
	47.45	00.00	46		0.35	4.40	0.44	
(0.9 - 0.2Sds) * DL + E 180 deg M1	17.15 17.15	00.00 00.00	45 135	1 1a	-0.25 -1.46	1.46 21.27	0.41 2.12	
	17.15	00.00	225	16	1.46	21.27	2.12	
	17.15	00.00	315	1c	0.25	1.46	0.41	
	47.40	~~ ~~	15					
(0.9 - 0.2Sds) * DL + E 180 deg M2	17.15 17.15	00.00 00.00	45 135	1 1a	-0.29 -1.43	2.00 20.73	0.24 1.96	
	17.15	00.00	225	16	1.43	20.73	1.96	
	17.15	00.00	315	1c	0.29	2.00	0.24	
(0.9 - 0.2Sds) * DL + E 225 deg M1	17.15 17.15	00.00	45 135	1 1a	0.46 -0.39	-2.65 11.36	0.46 1.33	
	17.15	00.00	135	1a 1b	2.18	25.38	2.18	
	17.15	00.00	315	1c	1.33	11.36	-0.39	
(0.9 - 0.2Sds) * DL + E 225 deg M2	17.15	00.00	45	1	0.32	-1.88	0.32	
	17.15	00.00	135	1a	-0.48	11.36	1.23	

Site Number:	88166		Code:			ANSI/TIA-222-G		© 2007 - 2019 by Å	TC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY		Engineeri	ing Numh	er.	12936321_G3_01			6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS		Lighteen	ing round		12000021_00_01			0113/2013 1/24/201 m
Customer:	VERIZON WIRELESS								
		17.15	00.00	225	1b		24.61	2.04	
		17.15	00.00	315	1c	1.23	11.36	-0.48	
(0.9 - 0.25de)	* DL + E 270 deg M1	17.15	00.00	45	1	0,41	1.46	-0.25	
(0.0 - 0.2308)	DE + E 1/0 deg mit	17.15	00.00	135	1a	0.41	1.46	0.25	
		17.15	00.00	225	15	2.12	21.27	1.46	
		17,15	00.00	315	10	2.12	21,27	-1.46	
(0.9 - 0.2Sds)	* DL + E 270 deg M2	17.15	00.00	45	1	0.24	2.00	-0.29	
		17.15	00.00	135	1a	0.24	2.00	0.29	
		17.15	00.00	225	1b	1.96	20.73	1.43	
		17.15	00.00	315	1ç	1.96	20.73	-1.43	
(0.9 - 0.2Sds)	* DL + E 315 deg M1	17.15	00.00	45	1	-0.39	11,36	-1.33	
(17.15	00.00	135	1a	0.46	-2.65	-0.46	
		17.15	00.00	225	1b	1.33	11.36	0.39	
		17.15	00.00	315	10	2.18	25.38	-2.18	
(0.9 - 0.2Sds) '	* DL + E 315 deg M2	17,15	00.00	45	1	-0.48	11.36	-1.23	
		17.15	00.00	135	1a	0.32	-1.88	-0.32	
		17.15	00.00	225	1b	1.23	11.36	0.48	
		17.15	00.00	315	1c	2.04	24.61	-2.04	
	- material Attention of								
1.0D + 1.0W S	ervice Normal	17.15	00.00	45	1	-2.93	45.64	-6.09	
		17.15 17.15	00.00 00.00	135	1a	0.66	-13,47	-3,81	
		17.15	00.00	225 315	1b 1c	-0.73 3.00	-13.82 46.28	-3.76 -5.99	
		11119	00.00	315	10	3.00	40.20	-0.00	
1.0D + 1.0W S	ervice 45 deg	17.15	00.00	45	1	-6.03	60.86	-6.16	
	÷	17.15	00.00	135	1a	-3.46	16.77	-1.17	
		17.15	00.00	225	1b	-3.88	-28.04	-3.80	
		17.15	00.00	315	10	-1.09	16.05	-3.33	
1.0D + 1.0W S	ervice 90 deg	17.15	00.00	45	1	-5.99	46.65	-3.02	
		17.15 17.15	00.00	135	1a	-6.09	47.00	2.95	
		17.15	00.00 00.00	225 315	1b 1c	-3.81 -3.76	-13.83 -14.19	-0.68 0.75	
		17.10	40.00	010	rw.	-5.10	-146,19	0.70	
1.0D + 1.0W S	ervice 135 dea	17.15	00.00	45	1	-3.38	16.41	1.12	
		17.15	00.00	135	1a	-6.10	61.21	6.10	
		17.15	00.00	225	1b	-1.12	16.41	3.38	
		17.15	00.00	315	10	-3.85	-28.40	3.85	
4.00 . 4.000 0.	antine 490 den	47 46	00.00	40		0.00	49.00	2.04	
1.0D + 1.0W S	ervice 100 deg	17.15 17.15	00.00 00.00	45 135	1 1a	0.68 -2.95	-13.82 47.00	3.81 6.09	
		17.15	00.00	225	16	3.02	46.64	5.99	
		17.15	00.00	315	10	-0.75	-14.18	3.76	
1.0D + 1.0W Si	ervice 225 deg	17.15	00.00	45	1	3.80	-28.04	3.88	
		17.15	00.00	135	1a	1.17	16.76	3.46	
		17.15	00.00	225	1b	6.16	60.86	6.03	
		17.15	00.00	315	1¢	3.33	16.05	1.09	
1.0D + 1.0W S	ervice 270 dea	17.15	00.00	45	1	3.76	-13.83	0.73	
		17.15	00.00	135	1a	3.61	-13.47	-0.66	
		17.15	00.00	225	16	6.09	46.65	2.93	
		17.15	00.00	315	1c	5.99	46.28	-3.00	
							40.11		
1.0D + 1.0W St	ervice 315 deg	17.15	00.00	45	1	1.14	16.41	-3.41	
		17.15 17.15	00.00 00.00	135	1a 15	3.83 3.41	-27.68 16.41	-3.83 -1.14	
		17.15	00.00	225 315	1b 1c	5.41 6.08	15.41	-1.14 -6.08	
		L N.	199 197 a 197 197	÷14		A J J.	***	- 197 to 197 197	

Site Number:	88166		Code:	AN	NSI/TIA-222-G	2007 - 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM	NY, NY	Engineering	Number: 12	936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIREL	ESS				
Max Uplift:	145.81 (kip)	Moment Ice:	1,860.40 (kip-ft)	Moment:	5,513.58 (kip-ft)	1.2D + 1.6W 135 deg
Max Down:	180.47 (kip)	Total Down Ice:	210.43 (kip)	Total Down:	78.76 (kip)	
Max Shear:	27.14 (kip)	Total Shear Ice:	25.50 (kip)	Total Shear:	73.70 (kip)	

Site Number:	88166	Code:	ANSI/TIA-222-G	2007 • 2019 by ATC IP LLC. All rights reserved.
Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01	6/13/2019 1:24:26 PM
Customer:	VERIZON WIRELESS			

Deflections and Rotations

Load Case (f) (fag) (fag) (fag) 00 mph Normal with No Ias 25.00 0.626 -0.017 0.6864 0.0684 90 mph Normal with No Ias 25.00 0.164 -0.0129 0.4844 0.1584 90 mph Normal with No Ias 75.00 0.164 -0.0129 0.4477 0.1684 90 mph Normal with No Ias 116.42 0.217 -0.0088 0.1616 0.1565 90 mph Normal with No Ias 116.42 0.217 0.0086 0.0686 0.0686 90 mph Normal with No Ias 125.00 0.242 -0.0171 0.1566 0.1555 90 mph 45 degree with No Ias 75.00 0.1094 0.0086 0.0686 0.0686 90 mph 45 degree with No Ias 75.00 0.142 0.0211 0.0286 0.1427 0.1427 90 mph 45 degree with No Ias 75.00 0.142 0.0284 0.0185 0.1775 0.1778 90 mph 36 degree with No Ias 75.00 0.142 0.0284 0.0180 0.0884 0.0883 0.08937		Elevation	Deflection	Twist	Sway	Resultant
90 mph Normal with No Ice 25.40 0.622 0.0017 0.6446 0.0646 90 mph Normal with No Ice 75.00 0.144 -0.023 0.0647 0.1364 90 mph Normal with No Ice 175.00 0.134 0.1186 0.1665 0.6965 0.0971 0.1427 0.1660 0.1675 0.1721 0.0978 0.1427 0.1661 0.0878 0.1427 0.1662 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.1695 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895	Load Case				-	
9 D mph Normal with No Ion 50.00 0.644 -0.029 0.1364 0.1364 90 mph Normal with No Ion 37.50 0.135 -0.0085 0.1468 90 mph Normal with No Ion 116.42 0.217 -0.0085 0.1616 0.1666 91 mph Normal with No Ion 116.42 0.217 -0.0085 0.1626 0.1666 91 mph Normal with No Ion 25.00 0.242 -0.0177 0.1686 0.1656 91 mph Af degree with No Ion 25.00 0.021 0.0084 0.0686 91 mph Af degree with No Ion 75.00 0.142 -0.0180 0.1427 0.1427 91 mph Af degree with No Ion 175.00 0.142 -0.0180 0.1778 0.1779 91 mph Af degree with No Ion 175.00 0.142 -0.0180 0.1782 0.1790 91 mph Af degree with No Ion 125.00 0.254 -0.0188 0.0644 0.0684 91 mph Af degree with No Ion 125.00 0.142 -0.0188 0.1782 0.1790 91 mph Af degree with No Ion 156.00 0.0164 -0.0081 0.171 0.1771 0.1771 0	90 mph Normal with No Ice					
90 mpt Normal with No ice75.000.104-0.0020.13640.136490 mpt Normal with No ice107.840.191-0.00850.16650.166690 mpt Normal with No ice125.000.2420.01710.15420.171290 mpt A5 degree with No ice25.000.0210.00950.01650.009590 mpt A5 degree with No ice75.000.1620.00950.17260.17270.174290 mpt A5 degree with No ice0.75.000.1620.00750.11220.17780.177990 mpt A5 degree with No ice0.75.000.142-0.01630.17850.179190 mpt A5 degree with No ice126.000.2640.06430.06430.064390 mpt A5 degree with No ice25.800.264-0.06380.06430.064490 mpt A5 degree with No ice75.900.114-0.06140.13710.137190 mpt A5 degree with No ice75.800.1360.13640.166490 mpt A5 degree with No ice75.900.1360.01430.17650.179290 mpt A5 degree with No ice75.900.1360.01430.01710.137190 mpt A5 degree with No ice167.640.1580.01640.066490 mpt A5 degree with No ice175.900.1360.01760.176590 mpt B5 degree with No ice176.900.1340.01760.17760.177690 mpt B5 degree with No ice176.900.1410.00350.06440.018090 mpt B5 degree	*					
90 mph Normal with No Ice 97.50 0.135 -0.0485 0.1487 0.1488 90 mph Normal with No Ice 116.42 0.217 -0.098 0.1168 0.1721 90 mph Normal with No Ice 125.00 0.242 0.0171 0.1686 0.0685 90 mph Af diggree with No Ice 25.00 0.021 0.0035 0.0695 0.0955 90 mph Af diggree with No Ice 75.00 0.142 0.0169 0.1472 0.1427 90 mph Af diggree with No Ice 107.34 0.201 -0.0140 0.1775 0.1779 90 mph Af diggree with No Ice 125.00 0.254 -0.0150 0.1772 0.1791 90 mph Af diggree with No Ice 25.00 0.0264 -0.0038 0.0643 0.0644 90 mph 90 diggree with No Ice 75.00 0.144 -0.0161 0.1371 0.1371 90 mph 90 diggree with No Ice 175.00 0.146 -0.0081 0.1371 0.1371 90 mph 90 diggree with No Ice 175.00 0.146 -0.0081 0.1371 0.1371 90 mph 90 diggree with No Ice 125.00 0.244 -0.0141 0.1481 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•					
90 mph Normal with No lee 107.84 0.191 -0.0898 0.6663 0.6713 0.6665 90 mph Normal with No lee 125.00 0.242 -0.017 0.656 0.055 90 mph A5 degree with No lee 65.00 0.026 0.0076 0.0285 0.0285 0.0285 0.0285 90 mph 45 degree with No lee 67.50 0.142 -0.0078 0.1427 0.1427 90 mph 45 degree with No lee 107.84 0.221 -0.0168 0.1752 0.1792 90 mph 45 degree with No lee 107.84 0.227 -0.0168 0.0782 0.1792 90 mph 50 degree with No lee 25.00 0.244 -0.0138 0.0643 0.0643 90 mph 50 degree with No lee 75.00 0.164 -0.0038 0.0433 0.0643 90 mph 50 degree with No lee 75.00 0.164 -0.0038 0.0541 0.1644 90 mph 50 degree with No lee 107.84 0.193 -0.1114 0.1731 0.1371 90 mph 50 degree with No lee 125.00 0.244 -0.0143 0.1762 0.1762 90 mph 50 degree with No lee 125.00	90 mph Normal with No Ice					
90 mph Normal with No Ice 116.42 0.217 0.0091 0.1788 0.1721 90 mph A5 degree with No Ice 25.00 0.021 0.0030 0.0695 0.0695 90 mph A5 degree with No Ice 25.00 0.021 0.0030 0.0495 0.0695 90 mph A5 degree with No Ice 75.00 0.169 0.078 0.1427 0.1427 90 mph A5 degree with No Ice 175.00 0.161 0.078 0.1795 0.1791 90 mph A5 degree with No Ice 125.00 0.224 0.0193 0.1792 0.1791 90 mph A5 degree with No Ice 25.00 0.264 0.0193 0.1795 0.1791 90 mph A5 degree with No Ice 75.00 0.164 0.0081 0.1785 0.1791 90 mph A5 degree with No Ice 175.00 0.164 0.0081 0.1795 0.1791 90 mph A5 degree with No Ice 116.42 0.219 -0.111 0.1795 0.1791 90 mph A5 degree with No Ice 116.42 0.219 -0.111 0.1795 0.1707 90 mph D4 degree with No Ice 116.42 0.219 -0.0114 0.0194 0						
90 mph 40 cmal with No Ice 126.00 0.242 -0.017 0.1566 0.0584 0.0584 0.0584 0.0584 0.0585 0.0585 90 mph 45 degree with No Ice 50.00 0.016 0.0078 0.1427 0.1427 90 mph 45 degree with No Ice 75.00 0.142 0.0078 0.1427 0.1755 0.1791 90 mph 45 degree with No Ice 107.24 0.227 4.0163 0.1755 0.1791 90 mph 45 degree with No Ice 128.00 0.244 4.0183 0.1782 0.1781 90 mph 45 degree with No Ice 25.80 0.0264 -0.0088 0.0364 0.0084 0.0084 0.0084 0.0084 0.0183 0.1371 0.1771 90 mph 90 degree with No Ice 87.50 0.138 -0.0183 0.1765 0.1707 90 mph 90 degree with No Ice 126.00 0.244 -0.0113 0.1705 0.1707 90 mph 135 degree with No Ice 25.00 0.021 -0.0040 0.0697 0.0698 90 mph 135 degree with No Ice 7.500 0.1414 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
90 mph 45 degree with No ice 25.00 0.021 0.003 0.0584 0.4685 90 mph 45 degree with No ice 75.00 0.109 0.0078 0.1427 0.1427 90 mph 45 degree with No ice 175.40 0.2014 -0.0086 0.1758 0.1778 90 mph 45 degree with No ice 175.44 0.201 0.0160 0.1785 0.1791 90 mph 45 degree with No ice 125.00 0.224 -0.0160 0.1782 0.1781 90 mph 45 degree with No ice 25.00 0.224 -0.0183 0.0454 0.0584 90 mph 90 degree with No ice 57.00 0.164 -0.0081 0.0584 0.1594 90 mph 90 degree with No ice 175.50 0.136 -0.0161 0.1705 0.1707 90 mph 90 degree with No ice 125.00 0.244 -0.0131 0.1705 0.1707 90 mph 90 degree with No ice 126.00 0.244 -0.0135 0.0164 0.0094 90 mph 10 degree with No ice 125.00 0.141 -0.0176 0.1778 0.1763	•					
90 mph 45 degree with No Ice 60.00 0.086 0.0061 0.0985 0.0985 90 mph 45 degree with No Ice 75.00 0.142 0.0096 0.1558 0.1651 90 mph 45 degree with No Ice 107.84 0.201 -0.0140 0.1775 0.1779 90 mph 45 degree with No Ice 126.00 0.227 -0.0150 0.1785 0.1789 90 mph 45 degree with No Ice 25.00 0.020 -0.0335 0.0644 0.0644 90 mph 90 degree with No Ice 75.00 0.144 -0.0305 0.0644 0.0644 90 mph 90 degree with No Ice 75.00 0.144 -0.0031 0.1571 0.1371 90 mph 90 degree with No Ice 125.00 0.244 -0.014 0.1705 0.1706 90 mph 136 degree with No Ice 125.00 0.244 -0.014 0.1708 0.1706 90 mph 136 degree with No Ice 125.00 0.244 -0.013 0.1708 0.1708 90 mph 136 degree with No Ice 175.00 0.144 -0.0032 0.0880 0.1689 0.1783	3					
90 mph 43 degree with No Ice 75.00 0.169 -0.078 0.1427 0.1427 90 mph 43 degree with No Ice 107.84 0.201 -0.0780 0.1775 0.1779 90 mph 43 degree with No Ice 116.42 0.224 -0.0180 0.1785 0.1779 90 mph 43 degree with No Ice 126.00 0.224 -0.0180 0.1785 0.1789 90 mph 90 degree with No Ice 25.00 0.020 -0.0180 0.0433 0.0444 90 mph 90 degree with No Ice 37.50 0.136 0.0081 0.1795 0.1779 90 mph 90 degree with No Ice 175.40 0.141 -0.0181 0.1705 0.1707 90 mph 90 degree with No Ice 175.40 0.141 0.1705 0.1707 90 mph 90 degree with No Ice 125.00 0.244 0.0115 0.1804 0.1808 90 mph 135 degree with No Ice 15.00 0.014 -0.0040 0.669 0.669 90 mph 135 degree with No Ice 15.00 0.141 0.0039 0.1659 0.1413 90 mph 135 degree with No Ice 75.00 0.141 0.0435 0.4844 0.1895						
90 mph 45 degree with No Ice 87.50 0.142 -0.0196 0.1755 0.1779 90 mph 45 degree with No Ice 116.42 0.227 -0.0190 0.1775 0.1779 90 mph 45 degree with No Ice 125.00 0.224 -0.0193 0.0454 0.0435 0.0544 90 mph 90 degree with No Ice 53.00 0.0414 -0.0083 0.0845 0.0544 90 mph 90 degree with No Ice 75.30 0.136 0.0193 0.1773 0.1371 90 mph 90 degree with No Ice 175.80 0.136 0.0193 0.1703 0.1707 90 mph 90 degree with No Ice 175.80 0.136 0.0193 0.1703 0.1707 90 mph 90 degree with No Ice 125.00 0.244 -0.0113 0.1703 0.1706 90 mph 135 degree with No Ice 125.00 0.0464 0.0413 0.4233 0.4423 0.4433 90 mph 135 degree with No Ice 107.84 0.200 0.0664 0.0035 0.0884 0.0885 0.9884 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783						
90 mph 45 degree with No Ice 107.34 0.201 -0.6140 0.1775 6.1779 90 mph 45 degree with No Ice 116.42 0.227 -0.0153 0.0153 0.01755 90 mph 90 degree with No Ice 25.00 0.020 -0.0058 0.0643 0.0643 90 mph 90 degree with No Ice 50.00 0.021 -0.0058 0.0643 0.0643 90 mph 90 degree with No Ice 75.00 0.164 -0.0058 0.0164 0.1371 0.1371 90 mph 90 degree with No Ice 87.60 0.136 -0.0010 0.1705 0.1706 90 mph 90 degree with No Ice 116.42 0.214 -0.0111 0.1706 0.1706 90 mph 90 degree with No Ice 125.00 0.244 -0.0115 0.1806 0.0860 90 mph 135 degree with No Ice 75.00 0.168 -0.0025 0.0860 0.0850 90 mph 135 degree with No Ice 116.42 0.224 -0.0115 0.1606 0.1508 90 mph 135 degree with No Ice 75.00 0.168 -0.0025 0.0860 0.0856 0.0866 0.0856 0.0866 0.0865 0.0866 0						
90 mph 45 degree with No Ice 116.42 0.224 -0.0160 0.1785 0.1796 90 mph 45 degree with No Ice 126.00 0.264 -0.0038 0.0643 0.0644 90 mph 90 degree with No Ice 50.00 0.0424 -0.0038 0.0834 0.0834 90 mph 90 degree with No Ice 75.00 0.1164 -0.0038 0.0544 0.1504 0.1504 0.1504 90 mph 90 degree with No Ice 177.84 0.133 -0.0110 0.1705 0.1707 90 mph 90 degree with No Ice 125.00 0.244 -0.0113 0.1706 0.1707 90 mph 90 degree with No Ice 125.00 0.244 -0.0113 0.1708 0.1785 90 mph 135 degree with No Ice 125.00 0.021 -0.0404 0.0679 0.0689 90 mph 135 degree with No Ice 125.00 0.244 -0.0113 0.1783 0.1783 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 107.84 0.202 0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 125.00 <t< td=""><td>90 mph 45 degree with No Ice</td><td></td><td></td><td></td><td></td><td></td></t<>	90 mph 45 degree with No Ice					
90 mph 90 degree with No Ice 125.00 0.264 -0.0163 0.1752 0.1758 90 mph 90 degree with No Ice 25.00 0.020 -0.0058 0.0634 0.0644 90 mph 90 degree with No Ice 37.50 0.1134 -0.1010 0.1371 0.1371 90 mph 90 degree with No Ice 37.50 0.136 -0.0058 0.0504 0.1504 90 mph 90 degree with No Ice 115.42 0.219 -0.0110 0.1705 0.1707 90 mph 90 degree with No Ice 125.00 0.244 -0.0055 0.0984 0.0986 90 mph 33 degree with No Ice 25.00 0.244 -0.0115 0.1608 0.0084 0.0885 90 mph 33 degree with No Ice 75.00 0.168 -0.0017 0.1823 0.1823 0.1823 0.1823 0.1823 0.1824 0.1423	90 mph 45 degree with No Ice	116.42				
90 mph 90 degree with No Ice 25.80 0.0038 0.0643 0.0643 0.0638 0.0643 90 mph 90 degree with No Ice 75.00 0.104 -0.0081 0.1371 0.1371 90 mph 90 degree with No Ice 87.50 0.134 -0.0081 0.1371 0.1371 90 mph 90 degree with No Ice 107.84 0.132 -0.0110 0.1705 0.1707 90 mph 90 degree with No Ice 125.00 0.244 -0.0115 0.1804 0.1804 90 mph 35 degree with No Ice 25.00 0.244 -0.0115 0.1804 0.1804 90 mph 135 degree with No Ice 75.00 0.141 0.0439 0.1699 0.1804 90 mph 135 degree with No Ice 87.50 0.1414 0.0039 0.1699 0.1869 90 mph 135 degree with No Ice 177.34 0.224 0.0012 0.178 0.1781 90 mph 135 degree with No Ice 125.00 0.254 0.0000 0.1779 0.1779 90 mph 135 degree with No Ice 25.00 0.254 0.00012 0.1785 0.1785		125.00				
90 mph 90 degree with No Ice 50.80 0.644 -0.0658 0.6937 90 mph 90 degree with No Ice 75.00 0.134 -0.0081 0.1371 90 mph 90 degree with No Ice 177.84 0.133 -0.0113 0.1703 0.1707 90 mph 90 degree with No Ice 116.42 0.214 -0.0113 0.1703 0.1706 90 mph 30 degree with No Ice 125.00 0.244 -0.0113 0.1804 0.1804 90 mph 35 degree with No Ice 25.00 0.244 -0.0115 0.1804 0.0885 90 mph 35 degree with No Ice 75.00 0.1616 -0.0035 0.0894 0.0885 90 mph 135 degree with No Ice 176.84 0.2001 0.1783 0.1783 90 mph 135 degree with No Ice 176.84 0.2001 0.1798 0.1798 90 mph 135 degree with No Ice 156.40 0.024 0.0001 0.1779 0.1779 90 mph 135 degree with No Ice 156.40 0.024 0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 156.40 0.024 0.0017 0.1779 0.1779 90 mph 135 degree with No Ic						
90 mph 90 degree with No Ice 75.00 0.144 -0.0081 0.1574 0.1574 90 mph 90 degree with No Ice 107.84 0.193 -0.0110 0.1705 0.1707 90 mph 90 degree with No Ice 116.42 0.244 -0.0113 0.1706 0.0180 90 mph 90 degree with No Ice 125.00 0.244 -0.0143 0.1705 0.0180 90 mph 135 degree with No Ice 25.06 0.024 -0.0040 0.0679 0.0680 90 mph 135 degree with No Ice 60.00 0.066 -0.0155 0.0884 0.0483 90 mph 135 degree with No Ice 75.00 0.181 -0.0141 0.1423 0.1423 90 mph 135 degree with No Ice 107.84 0.200 -0.017 0.1783 0.1783 90 mph 135 degree with No Ice 125.00 0.224 0.0001 0.1783 0.1784 90 mph 136 degree with No Ice 107.84 0.200 0.035 0.0646 0.0666 90 mph 136 degree with No Ice 107.84 0.178 0.1774 0.1774 90 mph 130 degree with No Ice 107.84 0.1207 0.0174 0.1774	90 mph 90 degree with No Ice	50.00	0.054			
90 mph 90 degree with No Ice 87.50 0.136 -0.0033 0.1504 0.1705 90 mph 90 degree with No Ice 107.84 0.193 -0.0113 0.1705 0.1706 90 mph 90 degree with No Ice 125.00 0.244 -0.0113 0.1804 0.1689 90 mph 135 degree with No Ice 25.00 0.024 -0.0140 0.0679 0.0680 90 mph 135 degree with No Ice 75.00 0.168 -0.0040 0.0689 0.9885 90 mph 135 degree with No Ice 75.00 0.141 -0.0139 0.1569 0.1783 90 mph 135 degree with No Ice 107.64 0.200 -0.017 0.1783 0.1783 90 mph 135 degree with No Ice 107.64 0.200 -0.017 0.1783 0.1783 90 mph 135 degree with No Ice 125.00 0.224 0.0001 0.1779 0.1778 90 mph 136 degree with No Ice 75.00 0.144 0.0195 0.0646 0.0666 90 mph 180 degree with No Ice 125.00 0.224 0.0012 0.0565 0.9965 90 mph 180 degree with No Ice 107.84 0.1193 0.1693 0.1						
90 mph 90 degree with No Ice 107.84 0.133 -0.0110 0.1705 0.1707 90 mph 90 degree with No Ice 125.00 0.244 -0.0115 0.1804 0.0808 90 mph 135 degree with No Ice 25.00 0.024 -0.0140 0.0874 0.0884 90 mph 135 degree with No Ice 25.00 0.024 -0.0140 0.0824 0.0884 90 mph 135 degree with No Ice 75.00 0.168 -0.0141 0.1423 0.1423 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1763 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1778 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1778 90 mph 130 degree with No Ice 107.84 0.020 0.0035 0.0646 0.0664 90 mph 130 degree with No Ice 107.84 0.193 0.0113 0.1783 0.1778 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 107.84 0.193 0.0113 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
90 mph 90 degree with No Ice 116.42 0.249 -0.0413 0.1705 0.1706 90 mph 90 degree with No Ice 25.60 0.021 -0.0035 0.0984 0.0985 90 mph 135 degree with No Ice 75.00 0.166 -0.0037 0.1768 0.1763 90 mph 135 degree with No Ice 87.50 0.141 -0.0039 0.1569 0.1763 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1763 90 mph 135 degree with No Ice 107.84 0.224 0.0017 0.1773 0.1778 90 mph 135 degree with No Ice 125.00 0.224 0.0000 0.1779 0.1779 90 mph 135 degree with No Ice 25.00 0.022 0.0035 0.0965 0.9965 90 mph 180 degree with No Ice 75.00 0.104 0.0076 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1683 0.1683 90 mph 180 degree with No Ice 107.84 0.133 0.0164 0.0046 0.9965 90 mph 180 degree with No Ice 107.85 0.1776 0.1776 0.1						
90 mph 90 degree with No ice 125.00 0.244 -0.0115 0.1804 0.1808 90 mph 135 degree with No ice 25.00 0.021 -0.0040 0.0679 0.0809 90 mph 135 degree with No ice 75.00 0.188 -0.0041 0.1423 0.1423 90 mph 135 degree with No ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No ice 125.00 0.224 0.00012 0.1779 0.1778 90 mph 135 degree with No ice 125.00 0.224 0.00012 0.1779 0.1779 90 mph 180 degree with No ice 25.00 0.020 0.0035 0.0646 0.0646 90 mph 180 degree with No ice 175.00 0.141 0.0175 0.1734 90 mph 180 degree with No ice 175.40 0.136 0.0082 0.1633 0.1685 90 mph 180 degree with No ice 125.00 0.244 0.0118 0.1783 0.1786 90 mph 180 degree with No ice 125.00 0.241 0.0169 0.0994 <td< td=""><td></td><td>116.42</td><td></td><td></td><td></td><td></td></td<>		116.42				
90 mph 135 degree with No Ice 25.00 0.021 -0.040 0.0679 0.0680 90 mph 135 degree with No Ice 50.00 0.056 -0.0035 0.0984 0.0985 90 mph 135 degree with No Ice 87.50 0.141 -0.0041 0.1423 0.1423 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1773 90 mph 135 degree with No Ice 116.42 0.227 0.0012 0.1778 0.1778 90 mph 135 degree with No Ice 125.00 0.0264 0.0064 0.0666 0.0664 90 mph 180 degree with No Ice 50.00 0.054 0.0049 0.0365 0.0565 90 mph 180 degree with No Ice 75.00 0.136 0.0082 0.1603 0.1603 90 mph 180 degree with No Ice 107.84 0.138 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 107.84 0.219 0.0118 0.1753 0.1766 90 mph 180 degree with No Ice 107.84 0.129 0.0118 0.1753 0.1766 90 mph 180 degree with No Ice 107.84 0.221 0.0168 0.1						
90 mph 135 degree with No Ice 50.00 0.065 -0.035 0.0884 0.0865 90 mph 135 degree with No Ice 75.00 0.108 -0.0017 0.1423 0.1423 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 116.42 0.227 0.0012 0.1798 0.1798 90 mph 135 degree with No Ice 125.00 0.254 0.0000 0.1779 0.1779 90 mph 180 degree with No Ice 25.00 0.020 0.0035 0.0646 0.0046 90 mph 180 degree with No Ice 75.00 0.144 0.0076 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.133 0.0113 0.1695 0.9955 90 mph 180 degree with No Ice 116.42 0.219 0.0113 0.1693 0.1685 90 mph 180 degree with No Ice 125.00 0.244 0.0118 0.1776 0.1776 90 mph 180 degree with No Ice 126.00 0.244 0.0118 0.1685 0.994 90 mph 125 degree with No Ice 126.00 0.244 0.0118 0.175	90 mph 135 degree with No Ice					
90 mph 135 degree with No Ice 75.00 0.108 -0.0041 0.1423 0.1423 90 mph 135 degree with No Ice 87.50 0.141 -0.0039 0.1569 0.1569 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 116.42 0.227 0.0012 0.1798 0.1779 90 mph 180 degree with No Ice 25.00 0.020 0.0035 0.0646 0.0646 90 mph 180 degree with No Ice 50.00 0.142 0.0076 0.1374 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.133 0.0182 0.1503 0.1695 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 125.00 0.244 0.0119 0.1684 0.1685 90 mph 180 degree with No Ice 125.00 0.021 0.0051 0.0994 0.0994 90 mph 125 degree with No Ice 75.00 0.1019 0.1427 0.1427 90 mph 225 degree with No Ice 75.00 0.1042 0.0094 0.0						
90 mph 135 degree with No Ice 87.50 0.141 -0.0039 0.1569 0.1569 90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 116.42 0.227 0.0012 0.0179 0.1779 90 mph 136 degree with No Ice 25.00 0.024 0.0035 0.0646 0.0646 90 mph 180 degree with No Ice 50.00 0.054 0.0049 0.9965 0.9965 90 mph 180 degree with No Ice 75.00 0.136 0.0082 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.193 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 125.00 0.244 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 126.00 0.244 0.0118 0.1753 0.1756 90 mph 225 degree with No Ice 75.00 0.142 0.0194 0.0695 90 mph 225 degree with No Ice 75.00 0.142 0.0113 0.1775 0.1775 90 mph 225 degree with No Ice 107.84 0.201 0.0109 0.1427 0.1427	90 mph 135 degree with No Ice	75.00				
90 mph 135 degree with No Ice 107.84 0.200 -0.0017 0.1783 0.1783 90 mph 135 degree with No Ice 116.42 0.227 0.0012 0.1798 0.1793 90 mph 135 degree with No Ice 125.00 0.254 0.0000 0.0757 0.0779 90 mph 180 degree with No Ice 50.00 0.0049 0.0965 0.0965 90 mph 180 degree with No Ice 75.00 0.104 0.0076 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1693 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1756 90 mph 180 degree with No Ice 125.00 0.244 0.0119 0.1684 0.1685 90 mph 180 degree with No Ice 125.00 0.221 0.0051 0.0695 0.0094 90 mph 225 degree with No Ice 116.42 0.211 0.0118 0.1775 0.1775 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1427 0.4427 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.						
90 mph 135 degree with No Ice 116.42 0.227 0.0012 0.1798 0.1798 90 mph 135 degree with No Ice 125.00 0.224 0.0000 0.1779 0.1773 90 mph 135 degree with No Ice 25.00 0.024 0.0049 0.0965 0.0965 90 mph 180 degree with No Ice 75.00 0.104 0.0076 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1693 0.1695 90 mph 180 degree with No Ice 125.00 0.244 0.019 0.1684 0.1695 90 mph 225 degree with No Ice 75.00 0.021 0.0051 0.0694 0.0695 90 mph 225 degree with No Ice 75.00 0.142 0.0095 0.1588 0.1560 90 mph 225 degree with No Ice 107.84 0.201 0.1584 0.1779 90 mph 225 degree with No Ice 107.84 0.201 0.0163 0.1775 0.1779<	90 mph 135 degree with No Ice	107.84	0.200	-0.0017		
90 mph 135 degree with No Ice 125.00 0.254 0.0000 0.1779 0.1779 90 mph 180 degree with No Ice 25.00 0.020 0.0035 0.0646 0.0646 90 mph 180 degree with No Ice 50.00 0.104 0.0076 0.1374 0.1374 90 mph 180 degree with No Ice 87.50 0.136 0.0082 0.1503 0.1693 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 125.00 0.244 0.0119 0.1584 0.1588 90 mph 180 degree with No Ice 125.00 0.244 0.0119 0.1695 0.0994 90 mph 225 degree with No Ice 75.00 0.0109 0.0109 0.1427 0.1427 90 mph 225 degree with No Ice 75.00 0.109 0.1168 0.1779 0.1779 90 mph 225 degree with No Ice 107.84 0.227 0.0164 0.1785 0.1779 90 mph 225 degree with No Ice 125.00 0.224 0.0039 0.0644 90 mph 270 degre	90 mph 135 degree with No Ice					
90 mph 180 degree with No Ice 25.00 0.020 0.0035 0.0646 0.0646 90 mph 180 degree with No Ice 50.00 0.044 0.0049 0.0965 0.0965 90 mph 180 degree with No Ice 75.00 0.136 0.0082 0.1503 0.1503 90 mph 180 degree with No Ice 107.84 0.133 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 126.00 0.244 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 126.00 0.244 0.0119 0.1684 0.1686 90 mph 255 degree with No Ice 25.00 0.0109 0.1427 0.1427 90 mph 225 degree with No Ice 75.00 0.109 0.1427 0.1427 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1755 90 mph 225 degree with No Ice 107.84 0.201 0.0158 0.1765 90 mph 225 degree with No Ice 125.00 0.254 0.0168 0.1755 0.1779 90 mph 225 degree with No Ice 16.42 0.221 0.0164 0.1765 0.1779 90 mph 270 degree with No Ice <td>90 mph 135 degree with No Ice</td> <td>125.00</td> <td>0.254</td> <td>0.0000</td> <td></td> <td></td>	90 mph 135 degree with No Ice	125.00	0.254	0.0000		
90 mph 180 degree with No Ice 50.00 0.054 0.0049 0.0965 0.0965 90 mph 180 degree with No Ice 75.00 0.104 0.0076 0.1374 0.1374 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1693 90 mph 180 degree with No Ice 107.84 0.193 0.0118 0.1783 0.1783 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1783 0.1785 90 mph 180 degree with No Ice 25.00 0.224 0.0119 0.1584 0.1695 90 mph 225 degree with No Ice 75.00 0.026 0.0070 0.0994 0.0994 90 mph 225 degree with No Ice 75.00 0.109 0.1427 0.1427 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.1779 90 mph 225 degree with No Ice 107.84 0.201 0.0158 0.1764 0.1764 90 mph 270 degree with No Ice 116.42 0.227 0.0164 0.1754 0.1776 90 mph 270 degree		25.00				
90 mph 180 degree with No Ice 87.50 0.136 0.0082 0.1503 0.1503 90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 126.00 0.244 0.019 0.1694 0.0695 90 mph 225 degree with No Ice 25.00 0.021 0.0051 0.0694 0.0994 90 mph 225 degree with No Ice 75.00 0.109 0.1427 0.1427 90 mph 225 degree with No Ice 87.50 0.142 0.0095 0.1558 0.1560 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.1779 90 mph 225 degree with No Ice 126.00 0.254 0.0168 0.1764 0.1761 90 mph 270 degree with No Ice 25.00 0.227 0.0164 0.1785 0.1761 90 mph 270 degree with No Ice 75.00 0.1044 0.0083 0.0393 0.0944 90 mph 270 degree	90 mph 180 degree with No Ice	50.00	0.054	0.0049	0.0965	0.0965
90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 126.00 0.244 0.0119 0.1683 0.1695 90 mph 225 degree with No Ice 25.00 0.021 0.0094 0.0994 90 mph 225 degree with No Ice 75.00 0.119 0.1427 0.1427 90 mph 225 degree with No Ice 87.50 0.142 0.0095 0.1558 0.1660 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.1779 90 mph 225 degree with No Ice 107.84 0.201 0.0168 0.1742 0.1427 90 mph 226 degree with No Ice 126.00 0.254 0.0168 0.1754 0.1761 90 mph 270 degree with No Ice 25.00 0.020 0.0039 0.0644 0.0644 90 mph 270 degree with No Ice 75.00 0.104 0.0083 0.1361 0.1361 90 mph 270 degree with No Ice 175.00 0.104 0.0083 0.1361 0.1361 <tr< td=""><td>90 mph 180 degree with No Ice</td><td>75.00</td><td>0.104</td><td></td><td></td><td></td></tr<>	90 mph 180 degree with No Ice	75.00	0.104			
90 mph 180 degree with No Ice 107.84 0.193 0.0113 0.1693 0.1695 90 mph 180 degree with No Ice 116.42 0.219 0.0118 0.1753 0.1756 90 mph 180 degree with No Ice 125.00 0.244 0.0119 0.1684 0.0695 90 mph 225 degree with No Ice 50.00 0.056 0.0070 0.0994 0.0994 90 mph 225 degree with No Ice 75.00 0.199 0.0109 0.1427 0.1427 90 mph 225 degree with No Ice 87.50 0.142 0.0095 0.1558 0.1756 90 mph 225 degree with No Ice 107.84 0.201 0.0169 0.1775 0.1779 90 mph 225 degree with No Ice 125.00 0.227 0.0164 0.1764 0.1761 90 mph 270 degree with No Ice 125.00 0.020 0.0039 0.0644 0.0644 90 mph 270 degree with No Ice 75.00 0.104 0.0083 0.1361 0.1361 90 mph 270 degree with No Ice 125.00 0.054 0.0606 0.0930 0.0930 90 mph 270 degree with No Ice 107.84 0.131 0.0112 0.1676	90 mph 180 degree with No Ice	87.50	0.136	0.0082	0.1503	0.1503
90 mph 180 degree with No Ice 125.00 0.244 0.0119 0.1584 0.1588 90 mph 225 degree with No Ice 25.00 0.021 0.0051 0.0694 0.0994 90 mph 225 degree with No Ice 50.00 0.056 0.0070 0.0994 0.0994 90 mph 225 degree with No Ice 75.00 0.109 0.1427 0.1427 90 mph 225 degree with No Ice 87.50 0.142 0.0095 0.1558 0.1568 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.1779 90 mph 225 degree with No Ice 116.42 0.227 0.0164 0.1785 0.1790 90 mph 270 degree with No Ice 125.00 0.254 0.0168 0.1754 0.1761 90 mph 270 degree with No Ice 50.00 0.020 0.0039 0.0644 0.0644 90 mph 270 degree with No Ice 75.00 0.1104 0.0083 0.1361 0.1361 90 mph 270 degree with No Ice 175.00 0.104 0.0094 0.1488 0.1489 90 mph 270 degree	90 mph 160 degree with No Ice	107.84	0.193		0.1693	
90 mph 225 degree with No Ice 25.00 0.021 0.0051 0.0694 0.0994 90 mph 225 degree with No Ice 50.00 0.056 0.0070 0.0994 0.0994 90 mph 225 degree with No Ice 75.00 0.109 0.1427 0.1427 90 mph 225 degree with No Ice 87.50 0.142 0.0055 0.1558 0.1660 90 mph 225 degree with No Ice 107.84 0.201 0.0168 0.1775 0.1790 90 mph 225 degree with No Ice 116.42 0.227 0.0164 0.1785 0.1761 90 mph 225 degree with No Ice 125.00 0.254 0.0168 0.1754 0.1761 90 mph 270 degree with No Ice 25.00 0.020 0.0033 0.0930 0.930 90 mph 270 degree with No Ice 75.00 0.135 0.0094 0.1488 0.1488 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1668 0.1671 <td>90 mph 160 degree with No Ice</td> <td>116.42</td> <td>0.219</td> <td>0.0118</td> <td>0.1753</td> <td>0.1756</td>	90 mph 160 degree with No Ice	116.42	0.219	0.0118	0.1753	0.1756
90 mph 225 degree with No Ice50.000.0560.00700.09940.099490 mph 225 degree with No Ice75.000.1090.01090.14270.142790 mph 225 degree with No Ice87.500.1420.00950.15580.166090 mph 225 degree with No Ice107.840.2010.01590.17750.177990 mph 225 degree with No Ice125.000.2270.01640.17850.179090 mph 225 degree with No Ice125.000.0200.00390.06440.064490 mph 270 degree with No Ice50.000.0540.00600.09300.093090 mph 270 degree with No Ice50.000.1040.00830.13610.136190 mph 270 degree with No Ice75.000.1040.00830.16760.167690 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice107.840.1910.01120.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 270 degree with No Ice125.000.2420.01180.16760.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.68810.688190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.1411	90 mph 180 degree with No Ice	125.00	0.244	0.0119	0.1584	0.1588
90 mph 225 degree with No Ice 75.00 0.109 0.0109 0.1427 0.1427 90 mph 225 degree with No Ice 87.50 0.142 0.0095 0.1558 0.1775 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.1779 90 mph 225 degree with No Ice 116.42 0.227 0.0164 0.1786 0.1790 90 mph 225 degree with No Ice 125.00 0.254 0.0168 0.1754 0.1761 90 mph 270 degree with No Ice 25.00 0.020 0.0039 0.0644 0.0644 90 mph 270 degree with No Ice 50.00 0.054 0.0060 0.0930 0.0930 90 mph 270 degree with No Ice 75.00 0.135 0.0094 0.1488 0.1489 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 370 degree with No Ice 125.00 0.217 0.0114 0.1668<	90 mph 225 degree with No Ice	25.00	0.021	0.0051	0.0694	0.0695
90 mph 225 degree with No Ice 87.50 0.142 0.0095 0.1558 0.1560 90 mph 225 degree with No Ice 107.84 0.201 0.0159 0.1775 0.1779 90 mph 225 degree with No Ice 116.42 0.227 0.0164 0.1785 0.1790 90 mph 225 degree with No Ice 125.00 0.254 0.0168 0.1754 0.1761 90 mph 270 degree with No Ice 25.00 0.020 0.0039 0.0644 0.0644 90 mph 270 degree with No Ice 50.00 0.054 0.0060 0.0930 0.0930 90 mph 270 degree with No Ice 75.00 0.104 0.0083 0.1488 0.1489 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 270 degree with No Ice 107.84 0.191 0.0112 0.1676 0.1678 90 mph 270 degree with No Ice 125.00 0.242 0.0118 0.1767 0.1771 90 mph 270 degree with No Ice 125.00 0.242 0.0118 0.1671 0.0680 0.0681 90 mph 315 degree with No Ice 50.00 0.056 0.0034<	90 mph 225 degree with No Ice	50.00	0.056	0.0070	0.0994	0.0994
90 mph 225 degree with No Ice107.840.2010.01590.17750.177990 mph 225 degree with No Ice116.420.2270.01640.17350.179090 mph 225 degree with No Ice125.000.2540.01680.17540.176190 mph 270 degree with No Ice25.000.0200.00390.06440.064490 mph 270 degree with No Ice50.000.0540.00600.09300.093090 mph 270 degree with No Ice75.000.11040.00830.13610.136190 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 315 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice75.000.1070.00400.04810.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice87.500.1400.00380.15430.1543<	90 mph 225 degree with No Ice	75.00	0.109	0.0109	0.1427	0.1427
90 mph 225 degree with No Ice116.420.2270.01640.17850.179090 mph 225 degree with No Ice125.000.2540.01680.17540.176190 mph 270 degree with No Ice25.000.0200.00390.06440.064490 mph 270 degree with No Ice50.000.0540.00600.09300.093090 mph 270 degree with No Ice75.000.1040.00830.13610.136190 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 270 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742 </td <td>90 mph 225 degree with No Ice</td> <td>87.50</td> <td>0.142</td> <td>0.0095</td> <td>0.1558</td> <td>0.1560</td>	90 mph 225 degree with No Ice	87.50	0.142	0.0095	0.1558	0.1560
90 mph 225 degree with No Ice125.000.2546.01680.17540.176190 mph 270 degree with No Ice25.000.0200.00390.06440.064490 mph 270 degree with No Ice50.000.0540.00600.09300.093090 mph 270 degree with No Ice75.000.1040.00830.13610.136190 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 270 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 225 degree with No Ice	107.84	0.201	0.0159	0.1775	0.1779
90 mph 270 degree with No Ice25.000.0200.00390.06440.064490 mph 270 degree with No Ice50.000.0540.00600.09300.093090 mph 270 degree with No Ice75.000.1040.00830.13610.136190 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 225 degree with No Ice	116.42	0.227	0.0164	0.1785	0.1790
90 mph 270 degree with No Ice50.000.0540.00600.09300.093090 mph 270 degree with No Ice75.000.1040.00830.13610.136190 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 225 degree with No Ice	125.00	0.254	0.0168	0.1754	0.1761
90 mph 270 degree with No Ice75.000.1040.00830.13610.136190 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 270 degree with No Ice	25.00	0.020	0.0039	0.0644	0.0644
90 mph 270 degree with No Ice87.500.1350.00940.14880.148990 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 270 degree with No Ice	50.00	0.054	0.0060	0.0930	0.0930
90 mph 270 degree with No Ice107.840.1910.01120.16760.167890 mph 270 degree with No Ice116.420.2170.01140.16680.167190 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 270 degree with No Ice	75.00	0.104	0.0083	0.1361	0.1361
90 mph 270 degree with No Ice 116.42 0.217 0.0114 0.1668 0.1671 90 mph 270 degree with No Ice 125.00 0.242 0.0118 0.1767 0.1771 90 mph 315 degree with No Ice 25.00 0.021 0.0040 0.0680 0.0681 90 mph 315 degree with No Ice 50.00 0.056 0.0034 0.0979 0.0979 90 mph 315 degree with No Ice 75.00 0.107 0.0040 0.1411 0.1411 90 mph 315 degree with No Ice 87.50 0.140 0.0038 0.1543 0.1543 90 mph 315 degree with No Ice 107.84 0.198 0.0016 0.1742 0.1742	90 mph 270 degree with No Ice	87.50	0.135	0.0094	0.1488	0.1489
90 mph 270 degree with No Ice125.000.2420.01180.17670.177190 mph 315 degree with No Ice25.000.0210.00400.06800.068190 mph 315 degree with No Ice50.000.0560.00340.09790.097990 mph 315 degree with No Ice75.000.1070.00400.14110.141190 mph 315 degree with No Ice87.500.1400.00380.15430.154390 mph 315 degree with No Ice107.840.1980.00160.17420.1742	90 mph 270 degree with No Ice	107.84		0.0112	0.1676	0.1678
90 mph 315 degree with No Ice 25.00 0.021 0.0040 0.0680 0.0681 90 mph 315 degree with No Ice 50.00 0.056 0.0034 0.0979 0.0979 90 mph 315 degree with No Ice 75.00 0.107 0.0040 0.1411 0.1411 90 mph 315 degree with No Ice 87.50 0.140 0.0038 0.1543 0.1543 90 mph 315 degree with No Ice 107.84 0.198 0.0016 0.1742 0.1742			0.217	0.0114	0.1668	0.1671
90 mph 315 degree with No Ice 50.00 0.056 0.0034 0.0979 0.0979 90 mph 315 degree with No Ice 75.00 0.107 0.0040 0.1411 0.1411 90 mph 315 degree with No Ice 87.50 0.140 0.0038 0.1543 0.1543 90 mph 315 degree with No Ice 107.84 0.198 0.0016 0.1742 0.1742	90 mph 270 degree with No Ice	125.00	0.242	0.0118	0.1767	0.1771
90 mph 315 degree with No Ice 75.00 0.107 0.0040 0.1411 0.1411 90 mph 315 degree with No Ice 87.50 0.140 0.0038 0.1543 0.1543 90 mph 315 degree with No Ice 107.84 0.198 0.0016 0.1742 0.1742	· · · · · · · · · · · · · · · · · · ·	25.00	0.021	0.0040		0.0681
90 mph 315 degree with No Ice 87.50 0.140 0.0038 0.1543 0.1543 90 mph 315 degree with No Ice 107.84 0.198 0.0016 0.1742 0.1742				0.0034	0.0979	0.0979
90 mph 315 degree with No Ice 107.84 0.198 0.0016 0.1742 0.1742				0.0040		
		87.50	0.140			0.1543
90 mph 315 degree with No Ice 116.42 0.224 0.0011 0.1749 0.1750					0.1742	
	90 mph 315 degree with No Ice	116.42	0.224	0.0011	0.1749	0.1750

Site Number: 88166	Code:	ANSI/TIA-222-G	Ø	2007 - 2019 by AT	C IP LLC. All rights reserved.	
Site Name: SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01			6/13/2019 1:24:26 PM	
Customer: VERIZON WIRELESS	-					
90 mph 315 degree with No Ice	125.00	0.250	-0.0001	0.1725	0.1725	
90 mph Normal with No Ice (Reduced DL)	25.00	0.020	0.0017	0.0645	0.0645	
90 mph Normal with No Ice (Reduced DL)	50.00	0.054	-0.0013	0.0961	0.0961	
90 mph Normal with No Ice (Reduced DL)	75.00	0.104	-0.0029	0.1364	0.1364	
90 mph Normal with No Ice (Reduced DL)	87.50	0.135	-0.0042	0.1487	0.1488	
90 mph Normai with No Ice (Reduced DL)	107.84	0.191	-0.0088	0.1665	0.1667	
90 mph Normal with No Ice (Reduced DL) 90 mph Normal with No Ice (Reduced DL)	116.42	0.217	-0.0099	0.1721	0.1723	
90 mph 45 deg with No Ice (Reduced DL)	125.00 25.00	0.242 0.021	-0.0117 0.0030	0.1550 0.0694	0.1555 0.0694	
90 mph 45 deg with No Ice (Reduced DL)	50.00	0.056	-0.0051	0.0994	0.0994	
90 mph 45 deg with No Ice (Reduced DL)	75.00	0.109	-0.0078	0.1426	0.1426	
90 mph 45 deg with No Ice (Reduced DL)	87.50	0.141	-0.0095	0.1556	0.1559	
90 mph 45 deg with No Ice (Reduced DL)	107.84	0.201	-0.0139	0.1773	0.1777	
90 mph 45 deg with No Ice (Reduced DL)	116.42	0.227	-0.0150	0.1783	0.1789	
90 mph 45 deg with No Ice (Reduced DL)	125.00	0.253	-0.0163	0.1750	0.1757	
90 mph 90 deg with No Ice (Reduced DL)	25.00	0.020	-0.0038	0.0642	0.0643	
90 mph 90 deg with No Ice (Reduced DL)	50.00	0.054	-0.0059	0.0934	0.0936	
90 mph 90 deg with No Ice (Reduced DL) 90 mph 90 deg with No Ice (Reduced DL)	75.00	0.104	-0.0082	0.1368	0.1368	
90 mph 90 deg with No Ice (Reduced DL) 90 mph 90 deg with No Ice (Reduced DL)	87.50 107.84	0.136 0.193	-0.0093 -0.0110	0.1500 0.1698	0.1500 0.1701	
90 mph 90 deg with No Ice (Reduced DL)	116.42	0.218	-0.0113	0.1696	0.1699	
90 mph 90 deg with No Ice (Reduced DL)	125.00	0.244	-0.0115	0.1797	0.1800	
90 mph 135 deg with No Ice (Reduced DL)	25.00	0.021	-0.0040	0.0679	0.0680	
90 mph 135 deg with No Ice (Reduced DL)	50.00	0.055	-0.0035	0.0983	0.0983	
90 mph 135 deg with No Ice (Reduced DL)	75.00	0.107	-0.0041	0.1421	0.1421	
90 mph 135 deg with No Ice (Reduced DL)	87.50	0.141	-0.0039	0.1564	0.1564	
90 mph 135 deg with No Ice (Reduced DL)	107.84	0.200	-0.0017	0.1776	0.1776	
90 mph 135 deg with No Ice (Reduced DL)	116.42	0.226	0.0012	0.1791	0.1791	
90 mph 135 deg with No Ice (Reduced DL) 90 mph 180 deg with No Ice (Reduced DL)	125.00 25.00	0.253 0.020	0.0000	0.1770	0.1770 0.0645	
90 mph 180 deg with No Ice (Reduced DL) 90 mph 180 deg with No Ice (Reduced DL)	50.00	0.054	0.0035 0.0049	0.0645 0.0964	0.0964	
90 mph 180 deg with No Ice (Reduced DL)	75.00	0.104	0.0076	0.1371	0.1372	
90 mph 180 deg with No Ice (Reduced DL)	87.50	0.136	0.0082	0.1499	0.1500	
90 mph 180 deg with No Ice (Reduced DL)	107.84	0.193	0.0113	0.1687	0.1689	
90 mph 180 deg with No Ice (Reduced DL)	116.42	0.218	0.0118	0.1747	0.1750	
90 mph 180 deg with No Ice (Reduced DL)	125.00	0.244	0.0119	0.1579	0.15B3	
90 mph 225 deg with No Ice (Reduced DL)	25.00	0.021	0.0051	0.0694	0.0694	
90 mph 225 deg with No ice (Reduced DL)	50.00	0.056	0.0070	0.0993	0.0993	
90 mph 225 deg with No Ice (Reduced DL)	75.00	0.109	0.0109	0.1426	0.1426	
90 mph 225 deg with No ice (Reduced DL) 90 mph 225 deg with No ice (Reduced DL)	87.50 107.84	0.141 0.201	0.0095	0.1556	0.1558	
90 mph 225 deg with No Ice (Reduced DL)	116.42	0.227	0.0159 0.0164	0.1773 0.1783	0.1777 0.1788	
90 mph 225 deg with No Ice (Reduced DL)	125.00	0.253	0.0168	0.1753	0.1760	
90 mph 270 deg with No Ice (Reduced DL)	25.00	0.020	0.0039	0.0643	0.0643	
90 mph 270 deg with No ice (Reduced DL)	50.00	0.054	0.0060	0.0930	0.0930	
90 mph 270 deg with No Ice (Reduced DL)	75.00	0.104	0.0083	0.1361	0.1361	
90 mph 270 deg with No Ice (Reduced DL)	87.50	0.135	0.0094	0.1489	0.1489	
90 mph 270 deg with No Ice (Reduced DL)	107.84	0.192	0.0112	0.1677	0.1679	
90 mph 270 deg with No Ice (Reduced DL)	116.42	0.217	0.0113	0.1670	0.1673	
90 mph 270 deg with No ice (Reduced DL) 90 mph 315 deg with No ice (Reduced DL)	125.00 25.00	0.242 0.021	0.0117 0.0040	0.1769 0.0679	0.1773 0.0680	
90 mph 315 deg with No Ice (Reduced DL)	50.00	0.056	0.0034	0.0979	0.0980	
90 mph 315 deg with No Ice (Reduced DL)	75.00	0.107	0.0040	0.1411	0.1411	
90 mph 315 deg with No Ice (Reduced DL)	87.50	0.140	0.0038	0.1545	0.1545	
90 mph 315 deg with No Ice (Reduced DL)	107.84	0.198	0.0017	0.1745	0.1745	
90 mph 315 deg with No Ice (Reduced DL)	116.42	0.224	0.0011	0.1754	0.1754	
90 mph 315 deg with No Ice (Reduced DL)	125.00	0.250	-0.0001	0.1730	0.1730	
50 mph Normal with 0.75 in Radial Ice	25.00	0.009	0.0007	0.0278	0.0278	
50 mph Normal with 0.75 in Radial Ice	50.00	0.020	-0.0002	0.0319	0.0319	
50 mph Normal with 0.75 in Radial Ice 50 mph Normal with 0.75 in Radial Ice	75.00 87.50	0.035 0.045	-0.0006 -0.0011	0.0426 0.0455	0.0426 0.0455	
50 mph Normal with 0.75 in Radial Ice	107.84	0.045	-0.0023	0.0491	0.0491	
— confluence concentration in the statement of the sta						
	Dama 36					

Site Number: 88166	Code:	ANSI/TIA-222-G	0	2007 - 2019 by A3	FC IP LLC. All rights	reserved.
Site Name: SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01			6/13/2019 1:24:	26 PM
Customer: VERIZON WIRELESS						
50 mph Normal with 0.75 in Radial Ice	116.42	0.068	-0.0026	0.0497	0.0498	
50 mph Normal with 0.76 in Radial Ice	125.00	0.075	-0.0030	0.0441	0.0442	
50 mph 45 deg with 0.75 in Radial Ice	25.00	0.010	0.0012	0.0295	0.0295	
50 mph 45 deg with 0.75 in Radial Ice	50.00	0.021	-0.0014	0.0328	0.0328	
50 mph 45 deg with 0.75 in Radial Ice	75.00	0.037	-0.0021	0.0448	0.0448	
50 mph 45 deg with 0.75 in Radial Ice 50 mph 45 deg with 0.75 in Radial Ice	87.50 107.84	0.047 0.065	-0.0026 -0.0037	0.0485 0.0542	0.0486 0.0543	
50 mph 45 deg with 0.75 in Radial Ice	116.42	0.073	-0.0039	0.0549	0.0550	
50 mph 45 deg with 0.75 in Radial Ice	125.00	0.081	-0.0042	0.0547	0.0549	
50 mph 90 deg with 0.75 in Radial Ice	25.00	0.009	-0.0013	0.0276	0.0276	
50 mph 90 deg with 0.75 in Radial Ice	50.00	0.020	-0.0018	0.0321	0.0321	
50 mph 90 deg with 0.75 in Radial Ice	75.00	0.036	-0.0024	0.0451	0.0451	
50 mph 90 deg with 0.75 in Radial Ice	87.50	0.046	-0.0027	0.0499	0.0499	
50 mph 90 deg with 0.75 in Radial Ice 50 mph 90 deg with 0.75 in Radial Ice	107.84 116.42	0.065 0.074	-0.0030 -0.0030	0.0580 0.0584	0.0581 0.0584	
50 mph 90 deg with 0.75 in Radial Ice	125.00	0.083	-0.0030	0.0628	0.0629	
50 mph 135 deg with 0.75 in Radial Ice	25.00	0.010	-0.0014	0.0293	0.0293	
50 mph 135 deg with 0.75 in Radial Ice	50.00	0.021	-0.0012	0.0335	0.0335	
50 mph 135 deg with 0.75 in Radial Ice	75.00	0.038	-0.0014	0.0465	0.0465	
50 mph 135 deg with 0.75 in Radial Ice	87.50	0.047	-0.0013	0.0517	0.0517	
50 mph 135 deg with 0.75 in Radial Ice	107.84	0.068	-0.0006	0.0599	0.0599	
50 mph 135 deg with 0.75 in Radial Ice 50 mph 135 deg with 0.75 in Radial Ice	116.42 125.00	0.077 0.086	0.0005 0.0000	0.0618 0.0622	0.0618 0.0622	
50 mph 180 deg with 0.75 in Radial Ice	25.00	0.009	0.0012	0.0227	0.0277	
50 mph 180 deg with 0.75 in Radial Ice	50.00	0.020	0.0014	0.0330	0.0330	
50 mph 180 deg with 0.75 in Radial Ice	75.00	0.036	0.0021	0.0452	0.0452	
50 mph 180 deg with 0.75 in Radial Ice	87.50	0.046	0.0024	0.0498	0.0498	
50 mph 180 deg with 0.75 in Radial Ice	107.84	0.065	0.0030	0.0576	0.0577	
50 mph 180 deg with 0.75 in Radial Ice	116.42	0.074	0.0032	0.0600	0.0600	
50 mph 180 deg with 0.75 in Radial Ice 50 mph 225 deg with 0.75 in Radial Ice	125.00 25.00	0.083 0.010	0.0030	0.0556 0.0295	0.0556 0.0295	
50 mph 225 deg with 0.75 in Radial ice	50,00	0.021	0.0017	0.0295	0.0329	
50 mph 225 deg with 0.75 in Radial Ice	75.00	0.037	0.0030	0.0448	0.0448	
50 mph 225 deg with 0.75 in Radial Ice	87.50	0.047	0.0023	0.0485	0.0486	
50 mph 225 deg with 0.75 in Radial Ice	107.84	0.065	0.0041	0.0542	0.0543	
50 mph 225 deg with 0.75 in Radial Ice	116.42	0.073	0.0042	0.0551	0.0552	
50 mph 225 deg with 0.75 in Radial Ice	125.00	0.081	0.0043	0.0537	0.0539	
50 mph 270 deg with 0.75 in Radial Ice	25.00	0.009	0.0013	0.0278	0.0278	
50 mph 270 deg with 0.75 in Radial Ice 50 mph 270 deg with 0.75 in Radial Ice	50.00 75.00	0.020 0.035	0.0018 0.0023	0.0309 0.0425	0.0309 0.0425	
50 mph 270 deg with 0.75 in Radial Ice	87.50	0.045	0.0024	0.0455	0.0455	
50 mph 270 deg with 0.75 in Radial Ice	107.84	0.061	0.0029	0.0495	0.0495	
50 mph 270 deg with 0.75 in Radial Ice	116.42	0.068	0.0029	0.0481	0.0482	
50 mph 270 deg with 0.75 in Radial Ice	125.00	0.076	0.0030	0.0512	0.0513	
50 mph 315 deg with 0.75 in Radial Ice	25.00	0.010	0.0015	0.0297	0.0297	
50 mph 315 deg with 0.75 in Radial Ice 50 mph 315 deg with 0.75 in Radial Ice	50.00 75.00	0.021 0.037	0.0012	0.0321 0.0428	0.0321	
50 mph 315 deg with 0.75 in Radial Ice	87.50	0.046	0.0012 0.0010	0.0445	0.0428 0.0445	
50 mph 315 deg with 0.75 in Radial Ice	107.84	0.062	0.0004	0.0476	0.0476	
50 mph 315 deg with 0.75 in Radial Ice	116.42	0.069	0.0002	0.0472	0.0472	
50 mph 315 deg with 0.75 in Radial Ice	125.00	0.076	0.0000	0.0459	0.0459	
Seismic Normal M1	25.00	0.001	0.0002	0.0052	0.0052	
Seismic Normal M1	50.00	0.005	0.0003	0.0094	0.0094	
Selsmic Normal M1 Selsmic Normal M1	75.00 87.50	0.010	0.0003	0.0141	0.0141	
Seismic Normal M1 Seismic Normal M1	107.84	0.013 0.019	0.0003 0.0001	0.01 5 7 0.0180	0.0157 0.0180	
Seismic Normal M1	116.42	0.022	0.0001	0.0176	0.0176	
Seismic Normal M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic Normal M2	25.00	0.001	0.0002	0.0044	0.0044	
Seismic Normal M2	50.00	0.004	0.0002	0.0090	0.0090	
Seismic Normal M2	75.00	0.009	0.0003	0.0142	0.0142	
Seismic Normal M2	87.50	0.012	0.0003	0.0163	0.0163	

Site Number: 88166	Code:	ANSI/TIA-222-G	c	2007 - 2019 by AT	CIPLLC. All rights	eserved.
Site Name: SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01			6/13/2019 1:24:	26 PM
Customer: VERIZON WIRELESS						
Seismic Normal M2	107.84	0.019	0.0002	0.0195	0.0195	
Seismic Normal M2	116.42	0.022	0.0001	0.0192	0.0192	
Seismic Normal M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic 45 deg M1	25.00	0.001	0.0003	0.0051	0.0051	
Seismic 45 deg M1	50.00	0.005	0.0004	0.0094	0.0094	
Seismic 45 deg M1 Seismic 45 deg M1	75.00 87.50	0.010 0.013	0.0005 0.0004	0.0142 0.01 5 8	0.0142 0.0158	
Seismic 45 deg M1	107.84	0.019	0.0004	0.0150	0.0179	
Seismic 45 deg M1	116.42	0.022	0.0001	0.0176	0.0176	
Seismic 45 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic 45 deg M2	25.00	0.001	0.0002	0.0044	0.0044	
Seismic 45 deg M2 Seismic 45 deg M2	50.00	0.004	0.0004	0.0090	0.0090	
Seismic 45 deg M2 Seismic 45 deg M2	75.00 87.50	0.009 0.013	0.0005	0.0143 0.0164	0.0143 0.0164	
Seismic 45 deg M2	107.84	0.019	0.0003	0.0194	0.0194	
Seismic 45 deg M2	116.42	0.022	0.0001	0.0192	0.0192	
Seismic 45 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic 90 deg M1	25.00	0.001	0.0002	0.0052	0.0052	
Seismic 90 deg M1	50.00	0.005	0.0003	0.0094	0.0094	
Seismic 90 deg M1 Seismic 90 deg M1	75.00 87.50	0.010 0.013	0.0003 0.0003	0.0141	0.0141	
Seismic 90 deg M1	107.84	0.019	0.0003	0.0157 0.0180	0.0157 0.0180	
Seismic 90 deg M1	116.42	0.022	0.0001	0.0176	0.0176	
Seismic 90 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic 90 deg M2	25.00	0.001	0.0002	0.0044	0.0044	
Seismic 90 deg M2	50.00	0.004	0.0002	0.0090	0.0090	
Seismic 90 deg M2	75.00	0.009	0.0003	0.0142	0.0142	
Seismic 90 deg M2 Seismic 90 deg M2	87.50 107.84	0.012 0.019	0.0003 0.0002	0.0163 0.0195	0.0163 0.0195	
Seismic 90 deg M2	116.42	0.022	0.0001	0.0192	0.0192	
Seismic 90 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic 135 deg M1	25.00	0.001	-0.0003	0.0051	0.0051	
Seismic 135 deg M1	50.00	0.005	-0.0004	0.0094	0.0094	
Seismic 135 deg M1 Seismic 135 deg M1	75.00 87.50	0.010 0.013	-0.0005 0.0004	0.0142	0.0142	
Seismic 135 deg M1	107.84	0.019	0.0002	0.0158 0.0179	0.0158 0.0179	
Seismic 135 deg M1	116.42	0.022	-0.0001	0.0176	0.0176	
Seismic 135 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic 135 deg M2	25.00	0.001	-0.0002	0.0044	0.0044	
Seismic 135 deg M2	50.00	0.004	-0.0004	0.0090	0.0090	
Seismic 135 deg M2 Seismic 135 deg M2	75.00 87.50	0.009 0.013	0.0005	0.0143 0.0164	0.0143 0.0164	
Seismic 135 deg M2	107.84	0.019	-0.0002	0.0194	0.0194	
Seismic 135 deg M2	116.42	0.022	-0.0001	0.0192	0.0192	
Seismic 135 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic 180 deg M1	25.00	0.001	-0.0002	0.0052	0.0052	
Seismic 180 deg M1	50.00	0.005	-0.0003	0.0094	0.0094	
Seismic 180 deg M1 Seismic 180 deg M1	75.00 87.50	0.010 0.013	-0.0003 -0.0003	0.0141 0.0157	0.0141 0.0157	
Seismic 180 deg M1	107.84	0.019	-0.0001	0.0180	0.0180	
Seismic 180 deg M1	116.42	0.022	0.0001	0.0176	0.0176	
Seismic 180 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic 180 deg M2	25.00	0.001	-0.0002	0.0044	0.0044	
Seismic 180 deg M2 Seismic 180 deg M2	50.00 75.00	0.004 0.009	-0.0002	0.0090	0.0090	
Seismic 160 deg M2 Seismic 180 deg M2	87.50	0.012	-0.0003 -0.0003	0.0142 0.0163	0.0142 0.0163	
Seismic 180 deg M2	107.84	0.019	-0.0002	0.0195	0.0195	
Seismic 160 deg M2	116.42	0.022	-0.0001	0.0192	0.0192	
Seismic 180 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic 225 deg M1	25.00	0.001	0.0003	0.0051	0.0051	
Seismic 225 deg M1 Seismic 225 deg M1	50.00 75.00	0.005 0.010	0.0004 0.0005	0.0094	0.0094	
Verentily 420 00g m l	19.00	0.010	0,0000	0.0142	0.0142	

Site Name: SOUTH SALEM NY, NY Engineering Number: 12336321_C3_01 0/13/2019 1:24:26 PM Customer: VENCOM WIRELESS
Customer: VERIZON WIRELESS Seismic 225 deg M1 87.50 0.013 0.0000 0.0156 0.0157 Seismic 225 deg M1 107.84 0.019 0.0001 0.0176 0.0177 Seismic 225 deg M1 118.42 0.022 0.0001 0.0176 0.0176 Seismic 225 deg M1 125.00 0.024 0.0000 0.0168 0.0163 Seismic 225 deg M2 25.00 0.001 0.0164 0.0044 0.0044 Seismic 225 deg M2 75.50 0.009 0.0005 0.0143 0.0143 Seismic 225 deg M2 87.50 0.014 0.0164 0.0164 Seismic 225 deg M2 107.64 0.019 0.0163 0.0143 Seismic 225 deg M2 116.42 0.024 0.0001 0.0192 Seismic 270 deg M1 25.00 0.014 0.0163 0.0141 0.0143 Seismic 270 deg M1 75.00 0.014 0.0108 0.0141 0.0143 Seismic 270 deg M1 107.84 0.019 0.0016
Selsmic 225 deg M1 107.84 0.012 0.0021 0.0179 0.0179 Solismic 225 deg M1 1125.00 0.024 0.0000 0.0168 0.0168 Selsmic 225 deg M2 25.00 0.001 0.0024 0.0000 0.0168 Selsmic 225 deg M2 25.00 0.004 0.0000 0.0001 0.0001 Selsmic 225 deg M2 75.00 0.006 0.0143 0.0143 Selsmic 225 deg M2 107.84 0.019 0.0000 0.0164 Selsmic 225 deg M2 116.42 0.022 0.0116 0.0122 0.1192 Selsmic 225 deg M2 125.00 0.024 0.0000 0.0163 0.0162 0.0052 Selsmic 270 deg M1 25.00 0.011 0.0002 0.0157 0.0157 Selsmic 270 deg M1 75.00 0.013 0.0033 0.0141 0.0141 Selsmic 270 deg M1 107.84 0.019 0.0001 0.0168 0.01176 Selsmic 270 deg M1 116.42 0.022 0.0011 0.0168 0.01
Selsmic 225 deg M1 107.84 0.012 0.0021 0.0179 0.0179 Solismic 225 deg M1 1125.00 0.024 0.0000 0.0168 0.0168 Selsmic 225 deg M2 25.00 0.001 0.0024 0.0000 0.0168 Selsmic 225 deg M2 25.00 0.004 0.0000 0.0001 0.0001 Selsmic 225 deg M2 75.00 0.006 0.0143 0.0143 Selsmic 225 deg M2 107.84 0.019 0.0000 0.0164 Selsmic 225 deg M2 116.42 0.022 0.0116 0.0122 0.1192 Selsmic 225 deg M2 125.00 0.024 0.0000 0.0163 0.0162 0.0052 Selsmic 270 deg M1 25.00 0.011 0.0002 0.0157 0.0157 Selsmic 270 deg M1 75.00 0.013 0.0033 0.0141 0.0141 Selsmic 270 deg M1 107.84 0.019 0.0001 0.0168 0.01176 Selsmic 270 deg M1 116.42 0.022 0.0011 0.0168 0.01
Seismic 225 deg M1 118.42 0.022 0.0001 0.0176 0.0176 Seismic 225 deg M2 25.00 0.024 0.0002 0.0044 0.0001 Seismic 225 deg M2 50.00 0.006 0.0064 0.0000 0.0090 Seismic 225 deg M2 75.00 0.006 0.0144 0.0143 Seismic 225 deg M2 87.50 0.001 0.0002 0.0144 0.0143 Seismic 225 deg M2 107.64 0.019 0.0002 0.0144 0.0143 Seismic 225 deg M2 116.42 0.022 0.0001 0.0152 0.0143 Seismic 270 deg M1 25.00 0.001 0.0002 0.0144 0.0161 Seismic 270 deg M1 75.00 0.010 0.0003 0.0141 0.0141 Seismic 270 deg M1 107.84 0.019 0.0001 0.0160 0.0180 Seismic 270 deg M1 125.00 0.024 0.0001 0.0162 0.0142 Seismic 270 deg M1 107.84 0.020 0.0014 0.0163 0.0143 </td
Seismic 225 deg M1 125.00 0.024 0.0000 0.0148 0.0144 Seismic 225 deg M2 50.00 0.004 0.0005 0.0144 0.0044 Seismic 225 deg M2 75.00 0.009 0.0005 0.0144 0.0143 Seismic 225 deg M2 75.00 0.009 0.0005 0.0144 0.0144 Seismic 225 deg M2 107.84 0.019 0.0002 0.0144 0.0192 Seismic 225 deg M2 164.42 0.022 0.0012 0.0192 0.0192 Seismic 225 deg M2 125.00 0.011 0.0002 0.0192 0.0192 Seismic 270 deg M1 50.00 0.010 0.0002 0.0192 0.0052 Seismic 270 deg M1 75.00 0.010 0.0003 0.0141 0.0141 Seismic 270 deg M1 107.84 0.019 0.0001 0.0166 0.0176 Seismic 270 deg M1 107.84 0.019 0.0002 0.0044 0.0002 Seismic 270 deg M2 25.00 0.0110 0.0002 0.0144<
Seismic 225 deg M2 25.00 0.004 0.0040 0.0040 0.0040 Seismic 225 deg M2 75.00 0.004 0.0005 0.0143 Seismic 225 deg M2 75.00 0.013 0.0000 0.0143 Seismic 225 deg M2 107.54 0.0113 0.0002 0.0184 0.0143 Seismic 225 deg M2 116.42 0.022 0.0001 0.0183 0.0183 Seismic 225 deg M2 125.00 0.024 0.0018 0.0183 0.0183 Seismic 270 deg M1 50.00 0.010 0.0024 0.0084 0.0094 Seismic 270 deg M1 75.00 0.011 0.0001 0.0166 0.0157 Seismic 270 deg M1 107.84 0.019 0.0001 0.0168 0.0168 Seismic 270 deg M1 107.84 0.019 0.0001 0.0168 0.0168 Seismic 270 deg M2 50.00 0.004 0.0012 0.0044 0.0042 Seismic 270 deg M2 57.50 0.012 0.0003 0.0142 0.0163
Seismic 225 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 225 deg M2 87.50 0.013 0.0000 0.0164 0.0164 Seismic 225 deg M2 107.84 0.012 0.0001 0.0192 0.0192 Seismic 225 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 270 deg M1 25.00 0.001 0.0002 0.0052 0.0054 Seismic 270 deg M1 50.00 0.0013 0.0003 0.0141 0.0143 Seismic 270 deg M1 75.00 0.013 0.0003 0.0157 0.0157 Seismic 270 deg M1 107.84 0.013 0.0001 0.0166 0.0168 Seismic 270 deg M1 116.42 0.024 0.0001 0.0168 0.0168 Seismic 270 deg M1 125.00 0.024 0.0001 0.0168 0.0168 Seismic 270 deg M2 50.00 0.0014 0.0002 0.0190 0.0090 Seismic 270 deg M2 107.84 0.019 0.0002 0.0195
Seismic 225 deg M2 \$7,60 0.013 0.0000 0.0164 0.0164 Seismic 225 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 225 deg M2 116.42 0.022 0.0001 0.0183 0.0183 Seismic 225 deg M2 125.00 0.010 0.0002 0.00183 0.0183 Seismic 270 deg M1 25.00 0.001 0.0003 0.0144 0.0044 Seismic 270 deg M1 75.00 0.010 0.0003 0.0141 0.0141 Seismic 270 deg M1 107.84 0.019 0.0001 0.0166 0.0168 Seismic 270 deg M1 126.00 0.024 0.0001 0.0168 0.0168 Seismic 270 deg M1 126.00 0.024 0.0001 0.0168 0.0168 Seismic 270 deg M2 25.00 0.0014 0.0002 0.0044 0.0004 Seismic 270 deg M2 75.00 0.012 0.0003 0.0142 0.0142 Seismic 270 deg M2 116.42 0.022 0.0001 0.019
Seismic 225 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 225 deg M2 116.42 0.022 0.0001 0.0182 0.0183 Seismic 225 deg M2 125.00 0.024 0.0001 0.0182 0.0183 Seismic 270 deg M1 25.00 0.001 0.0003 0.0144 0.0044 Seismic 270 deg M1 87.50 0.013 0.0003 0.0176 0.0177 Seismic 270 deg M1 107.84 0.019 0.0001 0.0180 0.0180 Seismic 270 deg M1 116.42 0.022 0.0001 0.0180 0.0166 Seismic 270 deg M1 116.42 0.022 0.0001 0.0180 0.0166 Seismic 270 deg M2 25.00 0.004 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.004 0.0002 0.0142 0.0142 Seismic 270 deg M2 107.84 0.019 0.0002 0.0142 0.0142 Seismic 270 deg M2 15.00 0.012 0.0163 0.0163<
Seismic 225 deg M2 116.42 0.022 0.001 0.0192 0.0192 Seismic 225 deg M2 125.00 0.024 0.0002 0.0552 0.0052 Seismic 270 deg M1 55.00 0.011 0.0003 0.0143 0.0054 Seismic 270 deg M1 55.00 0.010 0.0003 0.0141 0.0141 Seismic 270 deg M1 67.50 0.013 0.0003 0.0146 0.0141 Seismic 270 deg M1 107.84 0.049 0.0001 0.0166 0.0176 Seismic 270 deg M1 125.00 0.024 0.0000 0.0188 0.0168 Seismic 270 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 270 deg M2 56.00 0.004 0.0002 0.0044 0.0044 Seismic 270 deg M2 75.00 0.019 0.0002 0.0142 0.0142 Seismic 270 deg M2 107.84 0.019 0.0002 0.0142 0.0142 Seismic 270 deg M2 107.84 0.019 0.0002 0.0142 </td
Seismic 225 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 270 deg M1 25.00 0.001 0.0002 0.0054 0.0094 Seismic 270 deg M1 50.00 0.016 0.0003 0.0143 0.0094 Seismic 270 deg M1 87.50 0.013 0.0003 0.0141 0.0141 Seismic 270 deg M1 107.84 0.019 0.0001 0.0160 0.0176 Seismic 270 deg M1 116.42 0.022 0.0001 0.0176 0.0141 Seismic 270 deg M1 125.00 0.024 0.0000 0.0168 0.0142 Seismic 270 deg M2 25.00 0.001 0.0168 0.0142 Seismic 270 deg M2 50.00 0.004 0.0002 0.044 Seismic 270 deg M2 107.84 0.019 0.0002 0.0142 Seismic 370 deg M1 25.00 0.014 0.0014 0.0182 Seismic 370 deg M2 116.42 0.022 0.001 0.0182 Seismic 370 deg M1 25.00 0.00
Seismic 270 deg M1 25.00 0.001 0.0022 0.0052 Seismic 270 deg M1 50.00 0.005 0.0033 0.0094 0.0094 Seismic 270 deg M1 75.00 0.010 0.0003 0.0141 0.0141 Seismic 270 deg M1 87.50 0.013 0.0001 0.0180 0.0180 Seismic 270 deg M1 107.84 0.019 0.0001 0.0176 0.0176 Seismic 270 deg M1 116.42 0.022 0.0001 0.0176 0.0168 Seismic 270 deg M1 125.00 0.024 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.001 0.0002 0.0090 0.0090 Seismic 270 deg M2 75.00 0.012 0.0003 0.0142 0.0142 Seismic 270 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 370 deg M1 25.00 0.001 0.0002 0.0183 0.0183 Seismic 370 deg M1 25.00 0.001 0.0004 0.0192
Seismic 270 deg M1 50.00 0.005 0.0003 0.0094 Seismic 270 deg M1 75.00 0.010 0.0003 0.0141 0.0194 Seismic 270 deg M1 87.50 0.013 0.0003 0.0147 0.0157 Seismic 270 deg M1 107.84 0.019 0.0001 0.0180 0.0180 Seismic 270 deg M1 116.42 0.022 0.0001 0.0168 0.0144 Seismic 270 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 270 deg M2 67.50 0.012 0.0003 0.0142 0.0142 Seismic 270 deg M2 116.42 0.022 0.0001 0.0195 0.0195 Seismic 270 deg M2 126.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M1 25.00 0.001 0.00051 0.0051
Seismic 270 deg M1 75.00 0.010 0.0003 0.0141 0.0141 Seismic 270 deg M1 87.50 0.013 0.0003 0.0157 0.0157 Seismic 270 deg M1 107.84 0.012 0.0001 0.0166 0.0167 Seismic 270 deg M1 116.42 0.022 0.0001 0.0176 0.0176 Seismic 270 deg M2 25.00 0.024 0.0000 0.0168 0.0168 Seismic 270 deg M2 50.00 0.004 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.009 0.0003 0.0142 0.0142 Seismic 270 deg M2 75.00 0.009 0.0003 0.0163 0.0163 Seismic 270 deg M2 107.84 0.019 0.0002 0.0192 0.0192 Seismic 315 deg M1 25.00 0.001 0.0003 0.0183 0.0183 Seismic 315 deg M1 50.00 0.001 0.0005 0.0142 0.0142 Seismic 315 deg M1 75.00 0.0101 0.0005 0.0142
Seismic 270 deg M1 87.50 0.013 0.0003 0.0157 0.0157 Seismic 270 deg M1 107.84 0.019 0.0001 0.0160 0.0180 Seismic 270 deg M1 116.42 0.022 0.0001 0.0168 0.0168 Seismic 270 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 270 deg M2 25.00 0.001 0.0002 0.0090 0.0090 Seismic 270 deg M2 50.00 0.004 0.0002 0.0163 0.0142 Seismic 270 deg M2 75.00 0.012 0.0003 0.0142 0.0142 Seismic 270 deg M2 107.84 0.019 0.0002 0.0195 0.1195 Seismic 315 deg M1 25.00 0.001 0.0012 0.0192 0.0192 Seismic 315 deg M1 25.00 0.001 0.0004 0.0094 0.0094 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 107.84 0.019 0.0002 0.0176
Seismic 270 deg M1 107.84 0.019 0.0001 0.0180 0.0180 Seismic 270 deg M1 116.42 0.022 0.0001 0.0176 0.0176 Seismic 270 deg M2 25.00 0.001 0.0002 0.0044 0.0000 Seismic 270 deg M2 50.00 0.004 0.0002 0.0090 0.0163 Seismic 270 deg M2 75.00 0.009 0.0003 0.0163 0.0163 Seismic 270 deg M2 87.50 0.019 0.0002 0.0195 0.0195 Seismic 270 deg M2 107.84 0.019 0.0002 0.0183 0.0183 Seismic 270 deg M2 126.00 0.022 0.0001 0.0195 0.0192 Seismic 315 deg M1 25.00 0.001 0.0003 0.0183 0.0183 Seismic 315 deg M1 50.00 0.001 0.0004 0.0094 Seismic 315 deg M1 0.0142 0.0142 Seismic 315 deg M1 107.84 0.019 0.0002 0.0142 0.0142 Seismic 315 deg M1 15.00
Seismic 270 deg M1 116.42 0.022 0.0001 0.0176 0.0176 Seismic 270 deg M1 125.00 0.024 0.0000 0.0168 0.0044 Seismic 270 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.004 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.009 0.0003 0.0142 0.0142 Seismic 270 deg M2 87.50 0.012 0.0003 0.0143 0.0143 Seismic 270 deg M2 107.84 0.019 0.0002 0.0195 0.0192 Seismic 315 deg M1 25.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M1 50.00 0.001 0.0003 0.0051 0.0051 Seismic 315 deg M1 75.00 0.010 0.0004 0.0142 0.0142 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 107.84 0.019 0.0002 0.0176
Seismic 270 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 270 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.004 0.0002 0.0090 0.0090 Seismic 270 deg M2 75.00 0.009 0.0003 0.0142 0.0142 Seismic 270 deg M2 87.50 0.012 0.0003 0.0163 0.0163 Seismic 270 deg M2 107.84 0.019 0.0002 0.0195 0.0192 Seismic 270 deg M2 116.42 0.022 0.0001 0.0183 0.0183 Seismic 315 deg M1 25.00 0.001 0.0005 0.0142 0.0192 Seismic 315 deg M1 50.00 0.001 0.0005 0.0142 0.0142 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 107.84 0.019 0.0002 0.0179 0.0179 Seismic 315 deg M1 125.00 0.024 0.0004 0.0044
Seismic 270 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 270 deg M2 50.00 0.009 0.0003 0.0142 0.0090 Seismic 270 deg M2 75.00 0.009 0.0003 0.0142 0.0142 Seismic 270 deg M2 87.50 0.012 0.0003 0.0143 0.0163 Seismic 270 deg M2 107.84 0.019 0.0002 0.0195 0.0192 Seismic 270 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M1 25.00 0.001 0.0005 0.0142 0.0014 Seismic 315 deg M1 50.00 0.005 0.0044 0.0094 0.0094 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 107.84 0.019 0.0002 0.0179 0.0179 Seismic 315 deg M1 107.84 0.019 0.0002 0.0176 0.0176 Seismic 315 deg M1 125.00 0.024 0.0000 0.068
Seismic 270 deg M2 50.00 0.004 0.002 0.0080 0.0090 Seismic 270 deg M2 75.00 0.009 0.0003 0.0142 0.0142 Seismic 270 deg M2 87.50 0.012 0.0002 0.0185 0.0195 Seismic 270 deg M2 107.84 0.012 0.0002 0.0185 0.0195 Seismic 270 deg M2 115.42 0.022 0.001 0.0192 0.0192 Seismic 315 deg M1 25.00 0.001 0.0003 0.0051 0.0051 Seismic 315 deg M1 50.00 0.001 0.0005 0.0142 0.0142 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 87.50 0.013 0.0004 0.0168 0.0176 Seismic 315 deg M1 107.84 0.019 0.0022 0.0014 0.0044 0.0044 Seismic 315 deg M2 25.00 0.0011 0.0002 0.0168 0.0168 Seismic 315 deg M2 75.00 0.0024 0.0000
Seismic 270 deg M2 75.00 0.009 0.0003 0.0142 0.0142 Seismic 270 deg M2 87.50 0.012 0.0003 0.0163 0.0163 Seismic 270 deg M2 107.84 0.019 0.0002 0.0195 0.0195 Seismic 270 deg M2 116.42 0.022 0.0001 0.0192 0.0183 0.0183 Seismic 270 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M1 25.00 0.001 0.0004 0.0094 0.0094 Seismic 315 deg M1 57.50 0.013 0.0044 0.0094 0.0142 Seismic 315 deg M1 87.50 0.013 0.0004 0.0142 0.0142 Seismic 315 deg M1 107.84 0.019 0.0002 0.0176 0.0176 Seismic 315 deg M1 16.42 0.022 0.0001 0.0168 0.0168 Seismic 315 deg M1 16.42 0.022 0.0004 0.0090 0.0444 Seismic 315 deg M2 50.00 0.001 0.0005
Seismic 270 deg M287.500.0120.00030.01630.0163Seismic 270 deg M2107.840.0190.00020.01950.0195Selsmic 270 deg M2116.420.0220.00010.01920.0183Seismic 315 deg M125.000.0010.00030.00510.0051Seismic 315 deg M150.000.0050.00440.00940.0094Seismic 315 deg M150.000.0100.00050.01420.0142Seismic 315 deg M175.000.0100.00050.01420.0142Seismic 315 deg M187.500.0130.00040.01560.0156Seismic 315 deg M1107.840.0190.00020.01760.0176Seismic 315 deg M1116.420.0220.00010.01680.0168Seismic 315 deg M1125.000.0240.00000.01680.0168Seismic 315 deg M1125.000.0040.00900.00900.0090Seismic 315 deg M250.000.0010.00220.0440.0044Seismic 315 deg M275.000.0010.00250.01430.0143Seismic 315 deg M275.000.0090.00050.01430.0143Seismic 315 deg M275.000.0120.00050.01430.0143Seismic 315 deg M275.000.0120.00050.01430.0143Seismic 315 deg M2107.840.0190.00220.01440.0194Seismic 315 deg M2107.840.0190.002<
Seismic 270 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 270 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M1 25.00 0.001 0.0003 0.0051 0.0051 Seismic 315 deg M1 50.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 57.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 75.00 0.013 0.0004 0.0156 0.0156 Seismic 315 deg M1 107.84 0.019 0.0002 0.0179 0.0179 Seismic 315 deg M1 116.42 0.024 0.0000 0.0168 0.0168 Seismic 315 deg M1 116.42 0.022 0.0001 0.0176 0.0176 Seismic 315 deg M1 116.42 0.024 0.0000 0.0168 0.0168 Seismic 315 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 75.00 0.0012 0.0005 0.0143<
Seismic 270 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M1 25.00 0.001 0.0003 0.0051 0.0051 Seismic 315 deg M1 50.00 0.005 0.004 0.0094 0.0094 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 87.50 0.013 0.0004 0.0156 0.0176 Seismic 315 deg M1 107.84 0.019 0.0002 0.0176 0.0176 Seismic 315 deg M1 116.42 0.022 0.0001 0.0168 0.0168 Seismic 315 deg M2 25.00 0.011 0.0002 0.0044 0.0044 Seismic 315 deg M2 25.00 0.001 0.0065 0.0143 0.0143 Seismic 315 deg M2 75.00 0.004 0.0090 0.0090 Seismic 315 deg M2 75.00 0.004 0.0090 0.0090 Seismic 315 deg M2 75.00 0.012 0.0055 0.0143 0.0143 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.01
Seismic 315 deg M1 25.00 0.001 0.003 0.0051 0.0051 Seismic 315 deg M1 50.00 0.005 0.0044 0.0094 0.0094 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 87.50 0.013 0.0004 0.0156 0.0156 Seismic 315 deg M1 107.84 0.019 0.0002 0.0176 0.0176 Seismic 315 deg M1 116.42 0.022 0.0001 0.0168 0.0168 Seismic 315 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 315 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192
Seismic 315 deg M1 50.00 0.005 0.004 0.0094 Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 87.50 0.013 0.0004 0.0156 0.0156 Seismic 315 deg M1 107.84 0.019 0.0022 0.0179 0.0176 Seismic 315 deg M1 116.42 0.022 0.0001 0.0168 0.0142 Seismic 315 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 315 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 315 deg M2 107.84 0.019 0.0005 0.0162 0.0162 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192
Seismic 315 deg M1 75.00 0.010 0.0005 0.0142 0.0142 Seismic 315 deg M1 87.50 0.013 0.0004 0.0156 0.01356 Seismic 315 deg M1 107.84 0.019 0.0002 0.0179 0.0176 Seismic 315 deg M1 116.42 0.022 0.0001 0.0168 0.0168 Seismic 315 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 75.00 0.009 0.0090 0.0090 Seismic 315 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 </td
Seismic 315 deg M1 87.50 0.013 0.0004 0.0156 0.0156 Seismic 315 deg M1 107.84 0.019 0.0022 0.0179 0.0179 Seismic 315 deg M1 116.42 0.022 0.0001 0.0168 0.0168 Seismic 315 deg M1 125.00 0.024 0.0002 0.0044 0.0044 Seismic 315 deg M2 25.00 0.001 0.0022 0.0044 0.0044 Seismic 315 deg M2 50.00 0.004 0.0004 0.0090 0.0090 Seismic 315 deg M2 50.00 0.004 0.0005 0.0143 0.0143 Seismic 315 deg M2 75.00 0.009 0.0005 0.0162 0.0162 Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.001
Seismic 315 deg M1 107.84 0.019 0.0002 0.0179 0.0179 Seismic 315 deg M1 116.42 0.022 0.0001 0.0176 0.0176 Seismic 315 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 315 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.004 0.0004 0.0090 0.0090 Seismic 315 deg M2 50.00 0.004 0.0005 0.0143 0.0143 Seismic 315 deg M2 75.00 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.001 0.0022 0.0051 0.0051 Seismic (Reduced DL) Normal M1 25.00 0.001
Seismic 315 deg M1116.420.0220.00010.01760.0176Seismic 315 deg M1125.000.0240.00000.01680.0168Seismic 315 deg M225.000.0010.00020.00440.0044Seismic 315 deg M250.000.0040.00040.00900.0090Seismic 315 deg M275.000.0090.00050.01430.0143Seismic 315 deg M287.500.0120.00050.01620.0162Seismic 315 deg M2107.840.0190.00020.01940.0194Seismic 315 deg M2116.420.0220.00010.01920.0192Seismic 315 deg M2125.000.0240.00000.01830.0183Seismic 315 deg M2125.000.0240.00000.01830.0183Seismic 315 deg M250.000.0010.00220.00510.0051Seismic 315 deg M250.000.0010.00020.01830.0183Seismic 315 deg M250.000.0010.00020.00510.0051Seismic (Reduced DL) Normal M150.000.0050.00030.00930.0093
Seismic 315 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic 315 deg M2 25.00 0.001 0.0002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.004 0.0004 0.0090 0.0090 Seismic 315 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.001 0.0022 0.0051 0.0051 Seismic (Reduced DL) Normal M1 25.00 0.001 0.0003 0.0093 0.0093
Seismic 315 deg M2 25.00 0.001 0.002 0.0044 0.0044 Seismic 315 deg M2 50.00 0.004 0.0004 0.0090 0.0090 Seismic 315 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 116.42 0.022 0.0001 0.0183 0.0183 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.001 0.0002 0.0051 0.0051 Seismic (Reduced DL) Normal M1 25.00 0.001 0.0003 0.0093 0.0093
Seismic 315 deg M2 50.00 0.004 0.004 0.0090 0.0090 Seismic 315 deg M2 75.00 0.009 0.005 0.0143 0.0143 Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic (Reduced DL) Normal M1 25.00 0.001 0.0002 0.0051 0.0051 Seismic (Reduced DL) Normal M1 50.00 0.005 0.0003 0.0093 0.0093
Seismic 315 deg M2 75.00 0.009 0.0005 0.0143 0.0143 Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 116.42 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.001 0.0002 0.0051 0.0051 Seismic (Reduced DL) Normal M1 25.00 0.001 0.0003 0.0093 0.0093
Seismic 315 deg M2 87.50 0.012 0.0005 0.0162 0.0162 Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 116.42 0.024 0.0000 0.0183 0.0183 Seismic 315 deg M2 125.00 0.001 0.0002 0.0051 0.0051 Seismic (Reduced DL) Normal M1 25.00 0.005 0.0003 0.0093 0.0093
Seismic 315 deg M2 107.84 0.019 0.0002 0.0194 0.0194 Seismic 315 deg M2 116.42 0.022 0.0001 0.0192 0.0192 Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic (Reduced DL) Normal M1 25.00 0.001 0.0002 0.0051 0.0093 Seismic (Reduced DL) Normal M1 50.00 0.005 0.0003 0.0093 0.0093
Seismic 315 deg M2 125.00 0.024 0.0000 0.0183 0.0183 Seismic (Reduced DL) Normal M1 25.00 0.001 0.0002 0.0051 0.0051 Seismic (Reduced DL) Normal M1 50.00 0.005 0.0003 0.0093 0.0093
Seismic (Reduced DL) Normal M1 25.00 0.001 0.0002 0.0051 0.0051 Seismic (Reduced DL) Normal M1 50.00 0.005 0.0003 0.0093 0.0093
Seismic (Reduced DL) Normal M1 50.00 0.005 0.0003 0.0093 0.0093
Salemia (Raducad DI \ Normal M1 75.00 0.040 0.040 0.0444 0.0444
Seismic (Reduced DL) Normal M1 87.50 0.013 0.0003 0.0156 0.0156 Seismic (Reduced DL) Normal M1 407.04 0.012 0.0126 0.0156 0.0156
Seismic (Reduced DL) Normal M1 107.84 0.019 0.0001 0.0179 0.0179 Seismic (Reduced DL) Normal M1 116.42 0.022 0.0001 0.0175 0.0175
Seismic (Reduced DL) Normal M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic (Reduced DL) Normal M2 25.00 0.001 0.0002 0.0043 0.0044
Seismic (Reduced DL) Normal M2 50.00 0.004 0.0002 0.0089 0.0089
Seismic (Reduced DL) Normal M2 75.00 0.009 0.0003 0.0142 0.0142
Seismic (Reduced DL) Normal M2 87.50 0.012 0.0003 0.0162 0.0162
Seismic (Reduced DL) Normal M2 107.84 0.019 0.0002 0.0193 0.0193
Seismic (Reduced DL) Normal M2 116.42 0.022 0.0001 0.0192 0.0192
Seismic (Reduced DL) Normal M2 125.00 0.024 0.0000 0.0183 0.0183
Seismic (Reduced DL) 45 deg M1 25.00 0.001 0.0003 0.0051 0.0051
Seismic (Reduced DL) 45 deg M1 50.00 0.005 0.0004 0.0093 0.0093
Seismic (Reduced DL) 45 deg M1 75.00 0.010 0.0005 0.0141 0.0141
Seismic (Reduced DL) 45 deg M1 87.50 0.013 0.0004 0.0158 0.0158
Seismic (Reduced DL) 45 deg M1 107.84 0.019 0.0002 0.0179 0.0179
Seismic (Reduced DL) 45 deg M1 116.42 0.022 0.0001 0.0175 0.0175
Seismic (Reduced DL) 45 deg M1 125.00 0.024 0.0000 0.0168 0.0168 Seismic (Reduced DL) 45 deg M2 25.00 0.014 0.0000 0.0168 0.0168
Seismic (Reduced DL) 45 deg M2 25.00 0.001 0.0002 0.0043 0.0043 Seismic (Reduced DL) 45 deg M2 50.00 0.004 0.0089 0.0089
Seismic (Reduced DL) 45 deg M2 50.00 0.004 0.0089 0.0089

Site Number: 88166	Code:	ANSI/TIA-222-G	© 2	007 - 2019 by AT	C IP LLC. All rights re	eserved.
Site Name: SOUTH SALEM NY, NY	Engineering Number:	12936321_G3_01			6/13/2019 1:24:2	6 PM
Customer: VERIZON WIRELESS						
Seismic (Reduced DL) 45 deg M2	75.00	0.009	0.0005	0.0143	0.0143	
Seismic (Reduced DL) 45 deg M2	87.50	0.012	0.0005	0.0164	0.0164	
Seismic (Reduced DL) 45 deg M2	107.84	0.019	0.0002	0.0194	0.0194	
Seismic (Reduced DL) 45 deg M2	116.42	0.022	0.0001	0.0191	0.0191	
Seismic (Reduced DL) 45 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic (Reduced DL) 90 deg M1	25.00	0.001	0.0002	0.0051	0.0051	
Seismic (Reduced DL) 90 deg M1	50.00	0.005	0.0003	0.0093	0.0093	
Seismic (Reduced DL) 90 deg M1 Seismic (Reduced DL) 90 deg M1	75.00 87.50	0.010	0.0003	0.0141	0.0141	
Seismic (Reduced DL) 90 deg M1	107.84	0.013 0.019	0.0003 0.0001	0.0156 0.0179	0.0156 0.0179	
Seismic (Reduced DL) 90 deg M1	116.42	0.022	0.0001	0.0175	0.0175	
Seismic (Reduced DL) 90 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic (Reduced DL) 90 deg M2	25.00	0.001	0.0002	0.0043	0.0044	
Seismic (Reduced DL) 90 deg M2	50.00	0.004	0.0002	0.0089	0.0089	
Seismic (Reduced DL) 90 deg M2	75.00	0.009	0.0003	0.0142	0.0142	
Seismic (Reduced DL) 90 deg M2	87.50	0.012	0.0003	0.0162	0.0162	
Seismic (Reduced DL) 90 deg M2	107.84	0.019	0.0002	0.0193	0.0193	
Seismic (Reduced DL) 90 deg M2	116.42	0.022	0.0001	0.0192	0.0192	
Seismic (Reduced DL) 90 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic (Reduced DL) 135 deg M1	25.00	0.001	0.0003	0.0051	0.0051	
Seismic (Reduced DL) 135 deg M1	50.00	0.005	-0.0004	0.0093	0.0093	
Seismic (Reduced DL) 135 deg M1	75.00	0.010	-0.0005	0.0141	0.0141	
Seismic (Reduced DL) 135 deg M1	87.50	0.013	0.0004	0.0158	0.0158	
Seismic (Reduced DL) 135 deg M1	107.84	0.019	-0.0002	0.0179	0.0179	
Seismic (Reduced DL) 135 deg M1 Seismic (Reduced DL) 135 deg M1	116.42	0.022	0.0001	0.0175	0.0175	
Seismic (Reduced DL) 135 deg M1 Seismic (Reduced DL) 135 deg M2	125.00 25.00	0.024 0.001	0.0000 0.0002	0.0168 0.0043	0.0168 0.0043	
Seismic (Reduced DL) 135 deg M2	50.00	0.004	-0.0002	0.0089	0.0089	
Seismic (Reduced DL) 135 deg M2	75.00	0.009	0.0005	0.0143	0.0143	
Seismic (Reduced DL) 135 deg M2	87.50	0.012	-0.0005	0.0164	0.0164	
Seismic (Reduced DL) 135 deg M2	107.84	0.019	0.0002	0.0194	0.0194	
Seismic (Reduced DL) 135 deg M2	116.42	0.022	-0.0001	0.0191	0.0191	
Seismic (Reduced DL) 135 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic (Reduced DL) 180 deg M1	25.00	0.001	0.0002	0.0051	0.0051	
Seismic (Reduced DL) 180 deg M1	50.00	0.005	-0.0003	0.0093	0.0093	
Seismic (Reduced DL) 180 deg M1	75.00	0.010	-0.0003	0.0141	0.0141	
Seismic (Reduced DL) 180 deg M1	87.50	0.013	-0.0003	0.0156	0.0156	
Seismic (Reduced DL) 180 deg M1	107.84	0.019	-0.0001	0.0179	0.0179	
Seismic (Reduced DL) 180 deg M1	116.42	0.022	0.0001	0.0175	0.0175	
Seismic (Reduced DL) 180 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	25.00 50.00	0.001	0.0002	0.0043	0.0044	
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	75.00	0.004 0.009	-0.0002 0.0003	0.0089 0.0142	0.0089 0.8142	
Seismic (Reduced DL) 180 deg M2	87.50	0.012	-0.0003	0.0162	0.0162	
Seismic (Reduced DL) 180 deg M2	107.84	0.019	-0.0002	0.0193	0.0193	
Seismic (Reduced DL) 180 deg M2	116.42	0.022	0.0001	0.0192	0.0192	
Seismic (Reduced DL) 180 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic (Reduced DL) 225 deg M1	25.00	0.001	0.0003	0.0051	0.0051	
Seismic (Reduced DL) 225 deg M1	50.00	0.005	0.0004	0.0093	0.0093	
Seismic (Reduced DL) 225 deg M1	75.00	0.010	0.0005	0.0141	0.0141	
Seismic (Reduced DL) 225 deg M1	87.50	0.013	0.0000	0.0158	0.0158	
Seismic (Reduced DL) 225 deg M1	107.84	0.019	0.0002	0.0179	0.0179	
Seismic (Reduced DL) 225 deg M1	116.42	0.022	0.0001	0.0175	0.0175	
Seismic (Reduced DL) 225 deg M1	125.00	0.024	0.0000	0.0168	0.0168	
Seismic (Reduced DL) 225 deg M2	25.00	0.001	0.0002	0.0043	0.0043	
Seismic (Reduced DL) 225 deg M2 Seismic (Reduced DL) 225 deg M2	50.00	0.004	0.0004	0.0089	0.0089	
Seismic (Reduced DL) 225 deg M2 Seismic (Reduced DL) 225 deg M2	75.00 87.50	0.009	0.0005 0.0000	0.0143	0.0143	
Seismic (Reduced DL) 225 deg M2 Seismic (Reduced DL) 225 deg M2	107.84	0.012 0.019	0.0002	0.0164 0.0194	0.0164 0.0194	
Seismic (Reduced DL) 225 deg M2 Seismic (Reduced DL) 225 deg M2	116.42	0.022	0.0002	0.0194	0.0191	
Seismic (Reduced DL) 225 deg M2	125.00	0.024	0.0000	0.0183	0.0183	
Seismic (Reduced DL) 270 deg M1	25.00	0.001	0.0002	0.0051	0.0051	

Site Number: 88166	Code:	ANSI/TIA-222-G		2007 - 2019 by ATC	PLLC. All rights reserved.
Site Name: SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01			6/13/2019 1:24:26 PM
Customer: VERIZON WIRELESS					
Seismic (Reduced DL) 270 deg M1	50.00	0.005	0.0003	0.0093	0.0093
Seismic (Reduced DL) 270 deg M1	75.00	0.010	0.0003	0.0141	0.0141
Seismic (Reduced DL) 270 deg M1	87.50	0.013	0.0003	0.0156	0.0156
Seismic (Reduced DL) 270 deg M1	107.84	0.019	0.0001	0.0179	0.9179
Seismic (Reduced DL) 270 deg M1	116.42	0.022	0.0001	0.0175	0.0175
Seismic (Reduced DL) 270 deg M1	125.00	0.024	0.0000	0.0168	0.0168
Seismic (Reduced DL) 270 deg M2	25.00	0.001	0.0002	0.0043	0.0044
Seismic (Reduced DL) 270 deg M2	50.00	0.004	0.0002	0.0089	0.0089
Seismic (Reduced DL) 270 deg M2	75.00	0.009	0.0003	0.0142	0.0142
Seismic (Reduced DL) 270 deg M2	87.50	0.012	0.0003	0.0162	0.0162
Seismic (Reduced DL) 270 deg M2	107.84	0.019	0.0002	0.0193	0.0193
Seismic (Reduced DL) 270 deg M2	116.42	0.022	0.0001	0.0192	0.0192
Seismic (Reduced DL) 270 deg M2	125.00	0.024	0.0000	0.0183	0.0183
Seismic (Reduced DL) 315 deg M1 Seismic (Reduced DL) 315 deg M4	25.00 50.00	0.001	0.0003	0.0051	0.0051
Seismic (Reduced DL) 315 deg M1 Seismic (Reduced DL) 315 deg M1	75.00	0.005 0.010	0.0004	0.0093	0.0093
Seismic (Reduced DL) 315 deg M1	87.50	0.013	0.0005 0.0004	0.0141 0.0156	0.0141 0.0156
Seismic (Reduced DL) 315 deg M1	107.84	0.019	0.0002	0.0179	0.0179
Seismic (Reduced DL) 315 deg M1	116.42	0.022	0.0001	0.0175	0.0175
Seismic (Reduced DL) 315 deg M1	125.00	0.024	0.0000	0.0168	0.0168
Seismic (Reduced DL) 315 deg M2	25.00	0.001	0.0002	0.0043	0.0043
Seismic (Reduced DL) 315 deg M2	50.00	0.004	0.0004	0.0089	0.0089
Seismic (Reduced DL) 315 deg M2	75.00	0.009	0.0005	0.0143	0.0143
Seismic (Reduced DL) 315 deg M2	87.50	0.012	0.0005	0.0162	0.0162
Seismic (Reduced DL) 315 deg M2	107.84	0.019	0.0002	0.0194	0.0194
Seismic (Reduced DL) 315 deg M2	116.42	0.022	0.0001	0.0191	0.0191
Seismic (Reduced DL) 315 deg M2	125.00	0.024	0.0000	0.0183	0.0183
Serviceability - 60 mph Wind Normal	25.00	0.006	0.0005	0.0181	0.0182
Serviceability - 60 mph Wind Normal	50.00	0.015	-0.0004	0.0267	0.0267
Serviceability - 60 mph Wind Normal Serviceability - 60 mph Wind Normal	75.00 87.50	0.029 0.037	-0.0008 -0.0012	0.0376 0.0410	0.0376 0.0410
Serviceability - 60 mph Wind Normal	107.84	0.053	-0.0025	0.0410	0.0457
Serviceability - 60 mph Wind Normal	116.42	0.060	-0.0028	0.0469	0.0470
Serviceability - 60 mph Wind Normal	125.00	0.066	-0.0032	0.0422	0.0424
Serviceability - 60 mph Wind 45 deg	25.00	0.006	0.0009	0.0192	0.0193
Serviceability - 60 mph Wind 45 deg	50.00	0.016	-0.0013	0.0275	0.0275
Serviceability - 60 mph Wind 45 deg	75.00	0.030	-0.0021	0.0395	0.0395
Serviceability - 60 mph Wind 45 deg	87.50	0.039	-0.0026	0.0433	0.0433
Serviceability - 60 mph Wind 45 deg	107.84	0.056	-0.0039	0.0492	0.0493
Serviceability - 60 mph Wind 45 deg	116.42	0.063	-0.0042	0.0495	0.0496
Serviceability - 60 mph Wind 45 deg	125.00	0.070	-0.0045	0.0487	0.0489
Serviceability - 60 mph Wind 90 deg	25.00	0.006	-0.0011	0.0180	0.0180
Serviceability - 60 mph Wind 90 deg Serviceability - 60 mph Wind 90 deg	50.00 75.00	0.015	-0.0017	0.0262	0.0262
Serviceability - 60 mph Wind 90 deg	87.50	0.029 0.038	-0.0023 -0.0026	0.0383 0.0423	0.0383 0.0423
Serviceability - 60 mph Wind 90 deg	107.84	0.054	-0.0031	0.0483	0.0484
Serviceability - 60 mph Wind 90 deg	116.42	0.061	-0.0032	0.0484	0.0485
Serviceability - 60 mph Wind 90 deg	125,00	0.068	-0.0032	0.0513	0.0514
Serviceability - 60 mph Wind 135 deg	25.00	0.006	-0.0012	0.0188	0.0188
Serviceability - 60 mph Wind 135 deg	50.00	0.016	-0.0011	0.0274	0.0274
Serviceability - 60 mph Wind 135 deg	75.00	0.030	-0.0013	0.0398	0.0398
Serviceability - 60 mph Wind 135 deg	87.50	0.039	-0.0012	0.0442	0.0442
Serviceability - 60 mph Wind 135 deg	107.84	0.056	-0.0005	0.0506	0.0506
Serviceability - 60 mph Wind 135 deg	116.42	0.064	0.0004	0.0512	0.0512
Serviceability - 60 mph Wind 135 deg	125.00	0.071	0.0000	0.0508	0.0508
Serviceability - 60 mph Wind 180 deg	25.00	0.006	0.0010	0.0181	0.0181
Serviceability - 60 mph Wind 180 deg	50.00	0.015	0.0014	0.0270	0.0270
Serviceability - 60 mph Wind 180 deg Serviceability - 60 mph Wind 180 deg	75.00 87.50	0.029 0.038	0.0021 0.0023	0.0384	0.0384
Serviceability - 60 mph Wind 180 deg	107.84	0.054	0.0023	0.0422 0.0480	0.0422 0.0481
Serviceability - 60 mph Wind 180 deg	116.42	0.061	0.0031	0.0480	0.0498
Serviceability - 60 mph Wind 180 deg	125.00	0.068	0.0033	0.0453	0.0454

Site Name: SOUTH SALEM NY, NY Engineering Number: 12936321_C3_01 6/13/2019 1:24:26 PM Customer: VERIZON WIRELESS 6/13/2019 1:24:26 PM Serviceability - 60 mph Wind 225 deg 25.00 0.006 0.0014 0.0192 0.0193 Serviceability - 60 mph Wind 225 deg 50.00 0.016 0.0020 0.0275 0.0275 Serviceability - 60 mph Wind 225 deg 75.00 0.030 0.0031 0.0395 0.0395 Serviceability - 60 mph Wind 225 deg 87.50 0.039 0.0025 0.0433 0.0433 Serviceability - 60 mph Wind 225 deg 107.84 0.056 0.0044 0.0492 0.0493 Serviceability - 60 mph Wind 225 deg 116.42 0.063 0.0466 0.0497 0.0493 Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487 Serviceability - 60 mph Wind 227 deg 25.00 0.0066 0.0011 0.0181 0.0181	Site Number:	88166	Code:	ANSI/TIA-222-G	© 2007	- 2019 by ATC	IP LLC. All rights reserved.
Serviceability - 60 mph Wind 225 deg 25.00 0.006 0.0014 0.0192 0.0193 Serviceability - 60 mph Wind 225 deg 50.00 0.016 0.0020 0.0275 0.0275 Serviceability - 60 mph Wind 225 deg 75.00 0.030 0.0031 0.0395 0.0395 Serviceability - 60 mph Wind 225 deg 87.50 0.039 0.0025 0.0433 0.0433 Serviceability - 60 mph Wind 225 deg 107.84 0.056 0.0044 0.0492 0.0493 Serviceability - 60 mph Wind 225 deg 116.42 0.063 0.0046 0.0495 0.0497 Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Site Name:	SOUTH SALEM NY, NY	Engineering Number:	12936321_C3_01			6/13/2019 1:24:26 PM
Serviceability - 60 mph Wind 225 deg 50.00 0.016 0.0020 0.0275 0.0275 Serviceability - 60 mph Wind 225 deg 75.00 0.030 0.0031 0.0395 0.0395 Serviceability - 60 mph Wind 225 deg 87.50 0.039 0.0025 0.0433 0.0433 Serviceability - 60 mph Wind 225 deg 107.84 0.056 0.0044 0.0492 0.0493 Serviceability - 60 mph Wind 225 deg 116.42 0.063 0.0046 0.0495 0.0497 Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Customer:	VERIZON WIRELESS					
Serviceability = 60 mph Wind 225 deg 75.00 0.030 0.0031 0.0395 0.0395 Serviceability = 60 mph Wind 225 deg 87.50 0.039 0.0025 0.0433 0.0433 Serviceability = 60 mph Wind 225 deg 107.84 0.056 0.0044 0.0492 0.0493 Serviceability = 60 mph Wind 225 deg 116.42 0.063 0.0046 0.0495 0.0497 Serviceability = 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Serviceability -	- 60 mph Wind 225 deg	25.00	0.006	0.0014	0.0192	0.0193
Serviceability - 60 mph Wind 225 deg 87.50 0.039 0.0025 0.0433 0.0433 Serviceability - 60 mph Wind 225 deg 107.84 0.056 0.0044 0.0492 0.0493 Serviceability - 60 mph Wind 225 deg 116.42 0.063 0.0046 0.0495 0.0497 Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Serviceability -	- 60 mph Wind 225 deg	50.00	0.016	0.0020	0.0275	0.0275
Serviceability - 60 mph Wind 225 deg 107.84 0.056 0.0044 0.0492 0.0493 Serviceability - 60 mph Wind 225 deg 116.42 0.063 0.0046 0.0495 0.0497 Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Serviceability	- 60 mph Wind 225 deg	75.00	0.030	0.0031	0.0395	0.0395
Serviceability - 60 mph Wind 225 deg 116.42 0.063 0.0495 0.0497 Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Serviceability	- 60 mph Wind 225 deg	87.50	0.039	0.0025	0.0433	0.0433
Serviceability - 60 mph Wind 225 deg 125.00 0.070 0.0047 0.0485 0.0487	Serviceability -	- 60 mph Wind 225 deg	107.84	0.056	0.0044	0.0492	0.0493
	Serviceability -	- 60 mph Wind 225 deg	116.42	0.063	0.0046	0.0495	0.0497
Serviceability - 60 mph Wind 270 deg 25.00 0.006 0.0011 0.0181 0.0181	Serviceability -	- 60 mph Wind 225 deg	125.00	0.070	0.0047	0.0485	0.0487
	Serviceability -	- 60 mph Wind 270 deg	25.00	0.006	0.0011	0.0181	0.0181
Serviceability - 60 mph Wind 270 deg 50.00 50.015 0.0017 0.0258 0.0258	Serviceability -	- 60 mph Wind 270 deg	50.00	0.015	0.0017	0.0258	0.0258
Serviceability - 60 mph Wind 270 deg 75.00 0.029 0.0023 0.0376 0.0376	Serviceability -	- 60 mph Wind 270 deg	75.00	0.029	0.0023	0.0376	0.0376
Serviceability - 60 mph Wind 270 deg 87.50 0.037 0.0026 0.0410 0.0410	Serviceability -	- 60 mph Wind 270 deg	87.50	0.037	0.0026	0.0410	0.0410
Serviceability - 60 mph Wind 270 deg 107.84 0.053 0.0031 0.0460 0.0460	Serviceability -	- 60 mph Wind 270 deg	107.84	0.053	0.0031	0.0460	0.0460
Serviceability - 60 mph Wind 270 deg 116.42 0.060 0.0032 0.0455 0.0456	Serviceability -	- 60 mph Wind 270 deg	116.42	0.060	0.0032	0.0455	0.0456
Serviceability - 60 mph Wind 270 deg 125.00 0.066 0.0033 0.0482 0.0483	Serviceability -	- 60 mph Wind 270 deg	125.00	0.066	0.0033	0.0482	0.0483
Serviceability - 60 mph Wind 315 deg 25.00 0.006 0.0012 0.0189 0.0189	Serviceability -	60 mph Wind 315 deg	25.00	0.006	0.0012	0.0189	0.0189
Serviceability - 60 mph Wind 315 deg 50.00 0.016 0.0011 0.0270 0.0270	Serviceability -	60 mph Wind 315 deg	50.00	0.016	0.0011	0.0270	0.0270
Serviceability - 60 mph Wind 315 deg 75.00 0.030 0.0012 0.0388 0.0388	Serviceability -	60 mph Wind 315 deg	75.00	0.030	0.0012	0.0388	0.0388
Serviceability - 60 mph Wind 315 deg 87.50 0.038 0.0011 0.0420 0.0420	Serviceability -	60 mph Wind 315 deg	87.50	0.038	0.0011	0.0420	0.0420
Serviceability - 60 mph Wind 315 deg 107.84 0.054 0.0004 0.0471 0.0471	Serviceability -	- 60 mph Wind 315 deg	107.84	0.054	0.0004	0.0471	0.0471
Serviceability - 60 mph Wind 315 deg 116.42 0.061 0.0003 0.0472 0.0472	Serviceability -	- 60 mph Wind 315 deg	116.42	0.061	0.0003	0.0472	0.0472
Serviceability - 60 mph Wind 315 deg 125.00 0.068 0.0000 0.0463 0.0463	Serviceability -	- 60 mph Wind 315 deg	125.00	0.068	0.0000	0.0463	0.0463

Site Name: Site Number: Engineering Number: Engineer: Date:

Foundation

Design Loads (Factored)

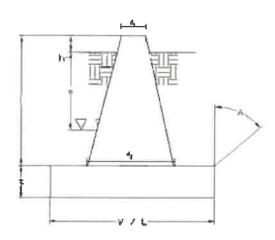
Compression/Leg: Uplift/Leg:

Face Width @ Top of Pier (d1): Face Width @ Bottom of Pier (d2): Total Length of Pier (I): Height of Pedestal Above Ground (h). Width of Pad (W): Length of Pad (L): Thickness of Pad (L): Water Table Depth (w): Unit Weight of Concrete: Unit Weight of Soil (Above Water Table): Unit Weight of Soil (Below Water Table): Friction Angle of Uplift (A): Ultimate Compressive Bearing Pressure: Ultimate Skin Friction:

Volume Pier (Total):	165.08	ft³
Volume Pad (Total):	450.00	ft³
Volume Soil (Total):	2129.96	ft³
Volume Pier (Buoyant):	0.00	ft³
Volume Pad (Buoyant):	0.00	ft ³
Volume Soil (Buoyant):	0.00	ft³
Weight Pier:	24.76	k
Weight Pad:	67.50	k
Weight Soil:	244.94	k
Ultimate Skin Friction:	0.00	k

Difference in Soil Volume 1:	519.62	ft³
Difference in Soil Volume 2:	118.51	ft ³
Difference in Soil Weight:	73.38	k

Uplift Check


¢s Uplift			
Resistance (k)	Ratio	Result	
252.91	0.58	OK	

Axial Check

ds Axial		
Resistance (k)	Ratio	Result
1645.31	0.11	OK

South Salem NY, NY 88166 12936321 Austin.Wilson 06/13/19

180.47 k 145.81 k 3.00 ft 6.50 ft 7.00. ft 0.50 ft 15.00 ft 15.00 ft 2.00 ft 99.00 TL 150.0 pcf 115.0 pcf \$2.6 pcl 30 * 9750 psf 0 psf

TOWN OF LEWISBORO

NOTICE OF PUBLIC HEARING

NOTICE IS HEREBY GIVEN that the Planning Board of the Town of Lewisboro, Westchester County, New York will convene a Public Hearing on Tuesday, December 15, 2020 at 7:30 p.m., or soon thereafter, using the videoconferencing app Zoom, regarding the following:

Cal #6-12PB

Application for Special Use Permit renewal to Verizon Wireless at the Leon Levy Preserve, 1411 Route 35 South Salem, NY 10590, Sheet 40, Block 10263, Lots 1, 62 (American Towers Inc., owner of record (Lot 62) for existing Verizon telecommunication equipment. The project property consists of approx. 4.040 acres and is located in a Four-Acre Residential (R-4A) Zoning District. Lot 1, which is utilized for access purposes only, is located in a Two -Acre Residential (R-2A) Zoning District.

Due to public health and safety concerns related to the COVID-19 virus, the Planning Board will not be meeting in person. Per Governor Cuomo's Executive Order No. 202.1, this meeting will be held via Zoom and a transcript will be provided at a later date. The public will have the opportunity to review digital copies of materials and proposed site documents at <u>https://www.lewisborogov.com/planningboard</u>

Interested members of the public are encouraged to provide written comments prior to and during the virtual public hearing by emailing Ciorsdan Conran, Planning Board Administrator, at <u>planning@lewisborogov.com</u> Please check the meeting agenda posted on the Board's web page for additional instructions and updates.

The public may view or participate through the Zoom app at https://zoom.us/j/98541138858?pwd=Y1VidHA1dXJjaXBTR0RTdFJjcUlFdz09 by clicking "Join a Meeting," and entering Meeting ID: 985 4113 8858 Passcode: 515716. You may call in to the Zoom meeting at 1-929-205-6099 when prompted, enter Meeting ID: 985 4113 8858 Passcode: 515716.

Persons wishing to object to the application should file a notice of objection with the Planning Board together with a statement of the grounds of objection prior to the closing of the Public Hearing. All interested parties are encouraged to view the Public Hearing and all will be provided an opportunity to be heard.

> PLANNING BOARD TOWN OF LEWISBORO By: Janet Andersen Chair

Dated: November 30, 2020

The Town of Lewisboro is committed to equal access for all citizens. Anyone needing accommodations to view or participate in this meeting is encouraged to notify the Administrator to the Planning Board in advance.

AFFIDAVIT OF MAILING

State of New York)) ss: County of Westchester)

Gabrielle Ferrezza being duly sworn, deposes and says that she is over twenty-one years of age and works at 94 White Plains Road, Tarrytown, in the State of New York; that she is a paralegal at Snyder & Snyder, LLP, the attorney for New York SMSA Limited Partnership d/b/a Verizon Wireless in connection with its request for a renewal of its special permit with respect to the existing communications tower at 1411 Route 35, South Salem, NY. On November 30, 2020, she served notice, a copy of which is attached hereto, upon the following named persons at the address set forth for each person, as shown on the attached list, by depositing said certified notices at the United States Post Office in Tarrytown, New York, a true copy of the said notices, addressed to each one of the persons named.

Gabrielle Ferrezza

Sworn to and subscribed before me this 30th day of July 2020 November


NOTARY PUBLIC

Z:\SSDATA\WPDATA\SS4\WP\NEWBANM\JoeRollins\LTEZoningAnalyses\SouthSalem(Lewisboro)4\SpecialPermitRenewal2020\Notices\A ffidavit of Mailing.docx

AMERICAN TOWERS INC. PO BOX 990265 BOSTON, MA 02199 TOWN OF LEWISBORO 11 MAIN STREET, PO BOX 500 SOUTH SALEM, NY 10590

AT&T CO. PO BOX 7207 BEDMINSTER, NJ 07921-7207

AFFIDAVIT OF POSTING

State of New York))ss:County of Westchester)

Gabrielle Ferrezza, being duly sworn, deposes and says that she is over twenty-one years of age and works at 94 White Plains Road, Tarrytown, in the State of New York; that she is a paralegal at Snyder & Snyder, LLP the attorney for New York SMSA Limited Partnership d/b/a Verizon Wireless in connection with its request for a renewal of its special permit with respect to the existing communications facility at 1411 Route 35, South Salem, NY. That on the 8th day of December, 2020, she posted notice at the property. A photograph of the sign has been attached hereto.

Gabrielle Ferrezza

Sworn to and subscribed before me this $\mathcal{S}^{\prime h}$ day of December 2020

Internation A.F. ARY PUBLIC NON EXPIR UN EXT

Z:\SSDATA\WPDATA\SS4\WP\NEWBANM\Joe Rollins\LTE Zoning Analyses\South Salem (Lewisboro) 4\Special Permit Renewal 2020\Notices\Affidavit Of Posting.Docx

Ciorsdan Conran

From:	Joseph Neu <jneu@neugroup.com></jneu@neugroup.com>
Sent:	Thursday, December 10, 2020 6:55 AM
То:	Ciorsdan Conran
Cc:	Tony Goncalves; Brian Porco; jim.moreo@cornerstone.it; Robert Cummings
Subject:	Re: Lewisboro, NY Wireless infrastructure back-up power language

Clarifying language on UPS: UPS, should be of the "on-line/double conversion" type, meaning that the load is always on the batteries which means there is literally zero down time between switches from line to gen, back to line.

Joseph Neu Founder and CEO NeuGroup Connect. Exchange. Distill. m <u>+1 917 744 8061</u> jneu@neugroup.com

On Dec 9, 2020, at 6:04 PM, Joseph Neu <jneu@neugroup.com> wrote:

Ciorsdan,

Below is what the consultant came back with concerning backup power along with added notations from AAB on making the battery in line as a UPS source to support the tower power until the generator kicks in.

We would also like Planning to ask that Town or other emergency services communications equipment be allowed to be installed at no charge on the installation/tower as a condition of new installations and renewal if not already granted under the Agreement. [This is patterned on the recent effort by Vista Fire to do this, Brian Porco copied]. ++

The application is granted upon the further condition that the applicant's wireless communications facility have:

- a) system alarms to alert applicant to a conventional power source failure;
- b) an battery backup uninterruptible power supply capable of operating the facility upon initial power failure for up to 30 minutes; and
- c) a back-up power generator to be demonstrated to the Town to provide power within 30 minutes, be of a sufficient capacity in watts/amperage to power the applicant's wireless communications facility and Town or other emergency services communications equipment provided for under the Agreement with sufficient fuel to operate for more than 72 continuous hours without refueling.

The fuel source shall be LNG (liquified natural gas a/k/a propane) and shall be contained in an above ground storage tank with the fuel capacity necessary to provide the foregoing operational parameters for continued network operations while awaiting refueling in a reasonable period of time, along with remote LNG storage tank monitoring to provide for a low fuel alarm.

Said generator shall be housed in a compartment containing sound-dampening materials to ensure that it does not generate more than 90 db when continuously operating as measured from the closest property line of the subject parcel.

From: Joseph Neu
Sent: Wednesday, December 9, 2020 12:24 PM
To: Brian Porco <brianporco1@gmail.com>
Cc: Tony Goncalves <tonyjg63@gmail.com>; main-antenna-advisory-board-town-of-lewisboro@mail.asana.com
Subject: RE: Lewisboro, NY Wireless infrastructure back-up power language

Here is what CityScape has come back with. Any thoughts before sending it on to planning?

From: Susan Rabold <<u>susan@cityscapegov.com</u>>
Sent: Wednesday, December 9, 2020 11:56 AM
To: Joseph Neu <<u>ineu@neugroup.com</u>>
Cc: Tony Goncalves <<u>tonyig63@gmail.com</u>>
Subject: Re: Lewisboro, NY Wireless infrastructure back-up power language

Greetings,

Please find below draft text for your considerations. You will need to harmonize with your terminology and add relevant information specific to the application but hopefully this will be a good start.

The application is granted upon the further condition that the applicant's wireless communications facility have:

- a) system alarms to alert applicant to a conventional power source failure;
- b) a battery backup power supply capable of operating the facility upon initial power failure for up to 30 minutes; and
- c) a back-up power generator to be demonstrated to the Town be of a sufficient capacity in watts/amperage to power the applicant's wireless communications facility with sufficient fuel to operate for more than 72 continuous hours without refueling.

The fuel source shall be LNG (liquified natural gas a/k/a propane) and shall be contained in an above ground storage tank with the fuel capacity necessary to provide the foregoing operational parameters for continued network operations while awaiting refueling in a reasonable period of time, along with remote LNG storage tank monitoring to provide for a low fuel alarm.

Said generator shall be housed in a compartment containing sound-dampening materials to ensure that it does not generate more than 90 db when continuously operating as measured from the closest property line of the subject parcel.

Please let me know of any questions.

Best regards, Susan

Susan Rabold | Project Manager Greensboro, NC Direct Line: 336-210-0843

Smith Ridge Associates LLC

450 Oakridge Common South Salem NY 10590 (914)533-7424

Town of Lewisboro 79 Bouton Road South Salem, NY 10590 November 16, 2020

Planning Board,

We are requesting the release of the \$6,850.00 cash deposit per Oakridge Common Shopping Center Amendment No. 1 Dated 12/18/18.

Said deposit was for the completion of the landscape plantings for the child care center. This work had been completed Spring 2019.

Sincerely,

10-

Phil Pine Smith Ridge Associates LLC, Member

November 10, 2020

Town of Lewisboro Planning Board 79 Bouton Road South Salem, New York 10590

RE: Wilder Balter Partners, Inc. Proposed Affordable Rental Housing Development NYS Route 22 Tax Map No. 5-10766-19, 20, 21

Dear Chairman Anderson and Members of the Board:

The Wetland Implementation Permit (Permit # 20-17 W.P.) and the Stormwater Permit (Permit # 5-17 S.W.) for the project are scheduled to expire on February 26, 2021. Construction work for the project will not be completed by that date, therefore, the Applicant is requesting a 1 year extension of the approvals for these permits.

Please place the project on the Board's upcoming December 15th, 2020 meeting agenda for consideration of an extension of approvals for the Stormwater Permit and the Wetland Implementation Permit.

Should you have any questions or comments regarding this information, please feel free to contact our office.

Very truly yours,

INSITE ENGINEERING, SURVEYING & LANDSCAPE ARCHITECTURE, P.C.

By: Jeffrey J. Contelmo, PE

Senior Principal Engineer

JJC/dlm

cc: John Bainlardi

Insite File No. 15246.100

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Permits, Region 3 21 South Putt Corners Road, New Paltz, NY 12561-1620 P: (845) 256-3054 | F: (845) 255-4659 www.dec.ny.gov

November 9, 2020

Property Group Partners LLC 375 Park Ave FI 35 New York NY 10152

RE: WB Lewisboro Affordable Housing DEC ID: 3-5530-00223/00001 Article 24 Freshwater Wetlands Permit Extension

PERMIT MODIFICATION

Dear Mr. Marino,

The New York State Department of Environmental Conservation (Department) has reviewed your written request on behalf of Wilder Balter Partners Inc. and Property Group Partners LLC to extend the expiration date of the above referenced permit. The permit is authorizes disturbances to the 100-foot adjacent area of Freshwater Wetland F-29, Class 1, associated with the grading and installation of an infiltration basin for stormwater management related to the construction of 46 affordable housing units.

In accordance with your request, dated October 26, 2020, the DEC hereby reissues this permit with a new expiration date of December 31, 2023.

All conditions of the permit remain as written in the original. Please attach this modification to the front of your permit. An updated permit sign is enclosed. This sign must be posed at the work site with appropriate weather protection.

If there are any questions, please feel free to contact Alysse Devine at alysse.devine@dec.ny.gov.

Sincerely,

Tracey O'Malley Deputy Regional Permit Administrator

Ecc: Joshua Fisher, NYSDEC Bureau of Ecosystem Health NYCDEP Town of Lewisboro Town Clerk Enc: Updated Permit Sign

New York State

Department of Environmental Conservation

The Department of Environmental Conservation (DEC) has issued permit(s) pursuant to the Environmental Conservation Law for work being conducted at this site. For further information regarding the nature and extent of work approved and any Department condition on it, contact the DEC at 845-256-3054. Please refer to the permit number shown when contacting the DEC.

Permittee: Wilder Balter Partners Inc. and Property Group Partners LLC Permit No. 3-5530-00223/00001

Effective Date: <u>11/9/2020</u>_____

Expiration Date: <u>12/31/2023</u>

□ Applicable if checked. No instream work allowed between October 1 & April 30

NOTE: This notice is **NOT** a permit.

Ciorsdan Conran

From:	Sirignano Law Office <lawoffice@sirignano.us></lawoffice@sirignano.us>
Sent:	Thursday, December 10, 2020 2:55 PM
То:	Ciorsdan Conran
Subject:	MB of Goldens Bridge Cal. #10-17 P.B.

Ciorsdan,

Request is respectfully made for extensions of the several time periods set forth in the 3/17/20 Resolution adopted by the Planning Board in this matter. Thank you,

Michael

_

Michael Fuller Sirignano Attorney and Counselor at Law Old Post Road Professional Building 892 Route 35, PO Box 784 Cross River, NY 10518 Telephone: (914) 763-5500 Fax: (914) 763-9589

The information transmitted in this message and its attachments (if any) is intended only for the person or entity to which it is addressed. This e-mail and any attachments are confidential and may be protected by the attorney-client privilege and the attorney work product doctrine. The message may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information, by persons or entities other than the intended recipient is prohibited. If you have received this in error, please contact the sender and delete this e-mail and associated material from any computer. The intended recipient of this e-mail may only use, reproduce, disclose or distribute the information contained in this e-mail and any attached files, with the permission of the sender.

§220-2. Definitions and word usage.

B. For the purposes of this chapter only, certain words and terms used herein are defined as follows:

OUTDOOR SPECIAL EVENTS

All outdoor sales events, street festivals, art exhibits, antiques markets, arts and crafts sales, food distribution, food trucks, food sales and/or food services of any kind, and all similar outdoor merchandising activities or special events.

§220-23. Schedule of regulations for residential districts.

D. Permitted accessory uses. Uses or structures customarily incidental to any permitted principal use are permitted, provided that such accessory use shall not include any activity commonly conducted for gain, except as hereinafter excepted, or any private way or walk giving access to such activity. Permitted accessory uses are as follows:

15. Outdoor special events on commercial properties only.

§220-24. Schedule of regulations for nonresidential districts.

- A. Permitted uses in CC-20 Districts.
 - (2) Permitted accessory uses are as follows:
 - (I) Outdoor special events on commercial properties only.
- B. Permitted uses in SU Districts.
 - (2) Permitted accessory uses are as follows:
 - (c) Outdoor special events on commercial properties only.
- C. Permitted uses in RB Districts.
 - (2) Permitted accessory uses are as follows:
 - (g) Outdoor special events on commercial properties only.
- D. Permitted uses in GB Districts.
 - (2) Permitted accessory uses are as follows:
 - (b) Outdoor special events on commercial properties only.

George Latimer County Executive

November 13, 2020

Janet L. Donohue, Town Clerk Town of Lewisboro 11 Main Street South Salem, NY 10590

County Planning Board Referral File LEW 20-005 – Outdoor Special Events Zoning Text Amendment

Dear Ms. Donohue:

The Westchester County Planning Board has received a proposed local law to amend the text of the Lewisboro Zoning Ordinance to allow "outdoor special events" on commercial properties as an accessory use in the CC-20, SU, RB and GB districts.

We have reviewed this matter under the provisions of Section 239 L, M and N of the General Municipal Law and Section 277.61 of the County Administrative Code and we find it to be a matter for local determination in accordance with the Town's planning and zoning policies.

Please inform us of the Town's decision so that we can make it a part of the record.

Thank you for calling this matter to our attention.

Respectfully, Westchester County Planning Board

By:

Kona U Dummend

Norma V. Drummond Commissioner

NVD/MV

TOWN OF RIDGEFIELD Planning and Zoning Commission

RECEIVED BY

November 10, 2020

Janet Donahue, Town Clerk Town House, 11 Main Street P.O. Box 500 South Salem, NY 10590 NOV 1 6 2020

Re: Referral under Section 8-7d of the Connecticut General Statutes: Application for Amendment to Town of Ridgefield Zoning Map

Dear Ms. Donahue:

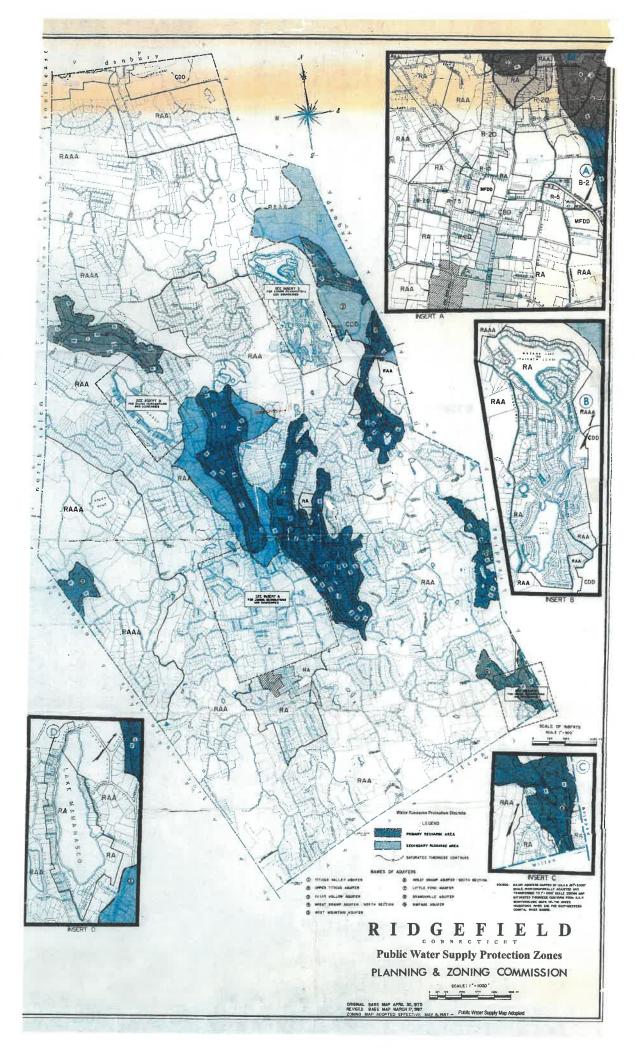
Per Section 8-7d of the Connecticut General Statutes, "the zoning commission, planning commission, zoning and planning commission...shall notify the clerk of any adjoining municipality of the pendency of any application, petition, appeal, request or plan concerning any project on any site in which... any portion of the property affected by a decision of such commission, board or agency is within five hundred feet of the boundary of the adjoining municipality". Per Section 8-7d, "such notice shall be made by certified mail, return receipt requested, and shall be mailed *within seven days* of the date of receipt of the application, petition, request or plan."

This letter is to inform you that the Town of Ridgefield Planning and Zoning Commission (Commission) statutorily received the attached Commission initiated zoning map amendment to rename Aquifer Protection Zones to Public Water Supply Protection Zones and relabel the zoning map accordingly.

Please reference the enclosed map.

<u>A public hearing on the proposed amendments will be held on Tuesday, December 1, 2020, at 7:00 p.m. via Zoom webinar. The link will be posted online prior to the hearing date.</u>

If you need additional information, please contact me at 203-431-2767.


Thank you,

Karen Martin Assistant Planner, Planning and Zoning

CERTIFIED MAIL: 7014 1820 0001 2135 1406

Enclosures: Subject File

66 Prospect Street • Ridgefield, CT 06877 Phone: (203) 431-2766 • Fax: (203) 431-2737 www.ridgefieldct.org

